IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-10-06.html
   My bibliography  Save this paper

Adaptation of Forests to Climate Change: Some Estimates

Author

Listed:
  • Sedjo, Roger A.

    (Resources for the Future)

Abstract

This paper is based on a World Bank–sponsored effort to develop a global estimate of adaptation costs, considering the implications of global climate change for industrial forestry. It focuses on the anticipated impacts of climate change on forests broadly, on industrial wood production in particular, and on Brazil, South Africa, and China. The aim is to identify likely damages and possible mitigating investments or activities. The study draws from the existing literature and the results of earlier investigations reporting the latest comprehensive projections in the literature. The results provide perspective as well as estimates and projections of the impacts of climate change on forests and forestry in various regions and countries. Because climate change will increase forest productivity in some areas while decreasing it elsewhere the impacts vary for positive to negative by region. In general, production increases will shift from low-latitude regions in the short term to high latitude regions in the long term. Planted forests will offer a major vehicle for adaptation.

Suggested Citation

  • Sedjo, Roger A., 2010. "Adaptation of Forests to Climate Change: Some Estimates," RFF Working Paper Series dp-10-06, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-10-06
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-10-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    2. Darwin, Roy & Tsigas, Marinos & Lewandrowski, Jan & Raneses, Anton, 1996. "Land use and cover in ecological economics," Ecological Economics, Elsevier, vol. 17(3), pages 157-181, June.
    3. Brent Sohngen and Roger Sedjo, 2006. "Carbon Sequestration in Global Forests Under Different Carbon Price Regimes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-126.
    4. W. A. Kurz & C. C. Dymond & G. Stinson & G. J. Rampley & E. T. Neilson & A. L. Carroll & T. Ebata & L. Safranyik, 2008. "Mountain pine beetle and forest carbon feedback to climate change," Nature, Nature, vol. 452(7190), pages 987-990, April.
    5. Daigneault, Adam J. & Sohngen, Brent & Sedjo, Roger, 2008. "Exchange rates and the competitiveness of the United States timber sector in a global economy," Forest Policy and Economics, Elsevier, vol. 10(3), pages 108-116, January.
    6. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogmans, Christian W.J. & Dijkema, Gerard P.J. & van Vliet, Michelle T.H., 2017. "Adaptation of thermal power plants: The (ir)relevance of climate (change) information," Energy Economics, Elsevier, vol. 62(C), pages 1-18.
    2. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    2. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    3. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    4. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    5. Gordeev, Roman, 2020. "Comparative advantages of Russian forest products on the global market," Forest Policy and Economics, Elsevier, vol. 119(C).
    6. G. Cornelis van Kooten, 2020. "Climate Change and Agriculture," Working Papers 2020-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    7. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    8. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    9. McCarl, Bruce A. & Attavanich, Witsanu & Musumba, Mark & Mu, Jianhong E. & Aisabokhae, Ruth, 2011. "Land Use and Climate Change," MPRA Paper 83993, University Library of Munich, Germany, revised 2014.
    10. Rose, Steven K., 2014. "Integrated assessment modeling of climate change adaptation in forestry and pasture land use: A review," Energy Economics, Elsevier, vol. 46(C), pages 548-554.
    11. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    12. Ruslana Rachel PALATNIK, 2008. "Climate Change Assessment and Agriculture in General Equilibrium Models: Alternative Modeling Strategies," EcoMod2008 23800101, EcoMod.
    13. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    14. Sedjo, Roger A. & Sohngen, Brent, 2007. "Carbon Credits for Avoided Deforestation," RFF Working Paper Series dp-07-47, Resources for the Future.
    15. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    16. Aishajiang Aili & Xu Hailiang & Abdul Waheed & Zhao Wanyu & Xu Qiao & Zhao Xinfeng & Zhang Peng, 2024. "The Dynamics of Vegetation Evapotranspiration and Its Response to Surface Meteorological Factors in the Altay Mountains, Northwest China," Sustainability, MDPI, vol. 16(19), pages 1-19, October.
    17. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    18. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    19. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    20. Paltsev, Sergey & Reilly, John & Tourdyeva, Natalia, 2009. "Russia and the World Energy Markets: Long-term Scenarios," Conference papers 331851, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Keywords

    forests; climate change; adaptation; productivity; plantations; industrial wood; climate models;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-10-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.