IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i2p417-426.html
   My bibliography  Save this article

Instance-based credit risk assessment for investment decisions in P2P lending

Author

Listed:
  • Guo, Yanhong
  • Zhou, Wenjun
  • Luo, Chunyu
  • Liu, Chuanren
  • Xiong, Hui

Abstract

Recent years have witnessed increased attention on peer-to-peer (P2P) lending, which provides an alternative way of financing without the involvement of traditional financial institutions. A key challenge for personal investors in P2P lending marketplaces is the effective allocation of their money across different loans by accurately assessing the credit risk of each loan. Traditional rating-based assessment models cannot meet the needs of individual investors in P2P lending, since they do not provide an explicit mechanism for asset allocation. In this study, we propose a data-driven investment decision-making framework for this emerging market. We designed an instance-based credit risk assessment model, which has the ability of evaluating the return and risk of each individual loan. Moreover, we formulated the investment decision in P2P lending as a portfolio optimization problem with boundary constraints. To validate the proposed model, we performed extensive experiments on real-world datasets from two notable P2P lending marketplaces. Experimental results revealed that the proposed model can effectively improve investment performances compared with existing methods in P2P lending.

Suggested Citation

  • Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:417-426
    DOI: 10.1016/j.ejor.2015.05.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715004610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.05.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    2. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    3. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    4. So, Meko M.C. & Thomas, Lyn C., 2011. "Modelling the profitability of credit cards by Markov decision processes," European Journal of Operational Research, Elsevier, vol. 212(1), pages 123-130, July.
    5. Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.
    6. Eric Rosenberg & Alan Gleit, 1994. "Quantitative Methods in Credit Management: A Survey," Operations Research, INFORMS, vol. 42(4), pages 589-613, August.
    7. Conlin, Michael, 1999. "Peer group micro-lending programs in Canada and the United States," Journal of Development Economics, Elsevier, vol. 60(1), pages 249-269, October.
    8. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    9. David Feldman & Shulamith Gross, 2005. "Mortgage Default: Classification Trees Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 30(4), pages 369-396, June.
    10. Yang, Yingxu, 2007. "Adaptive credit scoring with kernel learning methods," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1521-1536, December.
    11. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    12. Mollick, Ethan, 2014. "The dynamics of crowdfunding: An exploratory study," Journal of Business Venturing, Elsevier, vol. 29(1), pages 1-16.
    13. Herzenstein, Michal & Dholakia, Utpal M. & Andrews, Rick L., 2011. "Strategic Herding Behavior in Peer-to-Peer Loan Auctions," Journal of Interactive Marketing, Elsevier, vol. 25(1), pages 27-36.
    14. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    15. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    16. O. L. Mangasarian, 1965. "Linear and Nonlinear Separation of Patterns by Linear Programming," Operations Research, INFORMS, vol. 13(3), pages 444-452, June.
    17. Mancuso, Anthony J. & Goodwin, Barry K. & Grennes, Thomas J., 2003. "Nonlinear aspects of capital market integration and real interest rate equalization," International Review of Economics & Finance, Elsevier, vol. 12(3), pages 283-303.
    18. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    19. Fernandes, Marcelo, 2006. "Financial crashes as endogenous jumps: estimation, testing and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 111-141, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    2. Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
    3. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    4. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    5. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    6. Lorenzo Gai & Federica Ielasi, 2014. "Operational drivers affecting credit risk of mutual guarantee institutions," Journal of Risk Finance, Emerald Group Publishing, vol. 15(3), pages 275-293, May.
    7. Emil Adamek & Jan Janku, 2022. "What Drives Small Business Crowdfunding? Impact of Macroeconomic and Financial Factors," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 72(2), pages 172-196, June.
    8. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    9. R T Stewart, 2011. "A profit-based scoring system in consumer credit: making acquisition decisions for credit cards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1719-1725, September.
    10. Yuho Chung & Yiwei Li & Jianmin Jia, 2021. "Exploring embeddedness, centrality, and social influence on backer behavior: the role of backer networks in crowdfunding," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 925-946, September.
    11. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
    12. Huseyin Ince & Bora Aktan, 2009. "A comparison of data mining techniques for credit scoring in banking: A managerial perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(3), pages 233-240, March.
    13. Thomas Clauss & Thomas Niemand & Sascha Kraus & Patrick Schnetzer & Alexander Brem, 2019. "Increasing Crowdfunding Success Through Social Media: The Importance Of Reach And Utilisation In Reward-Based Crowdfunding," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 24(03), pages 1-30, May.
    14. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    15. J Banasik & J Crook, 2010. "Reject inference in survival analysis by augmentation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 473-485, March.
    16. Paolo Crosetto & Tobias Regner, 2014. "Crowdfunding: Determinants of success and funding dynamics," Jena Economics Research Papers 2014-035, Friedrich-Schiller-University Jena.
    17. Mo Leo S. F. & Yau Kelvin K. W., 2010. "Survival Mixture Model for Credit Risk Analysis," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(2), pages 1-20, July.
    18. Li Gan & Roberto Mosquera, 2008. "An Empirical Study of the Credit Market with Unobserved Consumer Typers," NBER Working Papers 13873, National Bureau of Economic Research, Inc.
    19. Fernandes, Guilherme Barreto & Artes, Rinaldo, 2016. "Spatial dependence in credit risk and its improvement in credit scoring," European Journal of Operational Research, Elsevier, vol. 249(2), pages 517-524.
    20. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:417-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.