IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v66y2024ics1544612324006810.html
   My bibliography  Save this article

Peer effect and funding success: Analyzing friendship networks in online credit markets

Author

Listed:
  • Gao, Hongming
  • Zhu, Hui
  • Ma, Haiying

Abstract

The challenge of limited information in online credit markets is well-recognized. This study examines the peer effect in microloan transactions using data from a leading Chinese lending platform. Results show that the likelihood of a borrower's funding success is higher when a higher proportion of online friends succeed. Both borrowers’ network centrality and digital footprints strengthen this effect, suggesting two mechanisms: social learning and informational complementarity. The peer effect is stronger among borrowers with larger networks, more loan experience, better repayment, and older age. The research provides new insights to mitigate information asymmetry in financial markets and guide investment decisions.

Suggested Citation

  • Gao, Hongming & Zhu, Hui & Ma, Haiying, 2024. "Peer effect and funding success: Analyzing friendship networks in online credit markets," Finance Research Letters, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:finlet:v:66:y:2024:i:c:s1544612324006810
    DOI: 10.1016/j.frl.2024.105651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324006810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiao & Jin, Ye & Li, Yilin & Wu, Banggang, 2023. "Learning from credit default," Finance Research Letters, Elsevier, vol. 58(PD).
    2. Itay Goldstein & Wei Jiang & G Andrew Karolyi, 2019. "To FinTech and Beyond," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1647-1661.
    3. Berger, Theo, 2023. "Explainable artificial intelligence and economic panel data: A study on volatility spillover along the supply chains," Finance Research Letters, Elsevier, vol. 54(C).
    4. Qun Chen & Ji-Wen Li & Jian-Guo Liu & Jing-Ti Han & Yun Shi & Xun-Hua Guo, 2021. "Borrower Learning Effects: Do Prior Experiences Promote Continuous Successes in Peer-to-Peer Lending?," Information Systems Frontiers, Springer, vol. 23(4), pages 963-986, August.
    5. Caglayan, Mustafa & Talavera, Oleksandr & Zhang, Wei, 2021. "Herding behaviour in P2P lending markets," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 27-41.
    6. DeFusco, Anthony A. & Tang, Huan & Yannelis, Constantine, 2022. "Measuring the welfare cost of asymmetric information in consumer credit markets," Journal of Financial Economics, Elsevier, vol. 146(3), pages 821-840.
    7. Gao, Qiang & Lin, Mingfeng & Sias, Richard, 2023. "Words Matter: The Role of Readability, Tone, and Deception Cues in Online Credit Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 58(1), pages 1-28, February.
    8. Wang, Shaoda & Ye, Dezhu & Liao, Junyun, 2024. "Politeness matters: The role of polite languages in online peer-to-peer lending," Journal of Business Research, Elsevier, vol. 171(C).
    9. Ho, Kung-Cheng & Gu, Yan & Yan, Cheng & Gozgor, Giray, 2024. "Peer effects in the online peer-to-peer lending market: Ex-ante selection and ex-post learning," International Review of Financial Analysis, Elsevier, vol. 92(C).
    10. Hasan, Iftekhar & He, Qing & Lu, Haitian, 2022. "Social Capital, Trusting, and Trustworthiness: Evidence from Peer-to-Peer Lending," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 57(4), pages 1409-1453, June.
    11. Seth M. Freedman & Ginger Zhe Jin, 2011. "Learning by Doing with Asymmetric Information: Evidence from Prosper.com," NBER Working Papers 16855, National Bureau of Economic Research, Inc.
    12. Davaadorj, Zagdbazar, 2024. "The influence of the digital divide on peer-to-peer lending outcomes," Finance Research Letters, Elsevier, vol. 61(C).
    13. Loutfi, Ahmad Amine, 2022. "A framework for evaluating the business deployability of digital footprint based models for consumer credit," Journal of Business Research, Elsevier, vol. 152(C), pages 473-486.
    14. Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
    15. Wang, Jin & Li, Rui, 2023. "Asymmetric information in peer-to-peer lending: empirical evidence from China," Finance Research Letters, Elsevier, vol. 51(C).
    16. Tobias Berg & Valentin Burg & Ana Gombović & Manju Puri, 2020. "On the Rise of FinTechs: Credit Scoring Using Digital Footprints," The Review of Financial Studies, Society for Financial Studies, vol. 33(7), pages 2845-2897.
    17. Chen, Xiao & Chong, Zhaohui & Giudici, Paolo & Huang, Bihong, 2022. "Network centrality effects in peer to peer lending," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    18. Nadia Nahar Purkayastha & Şule Erdem Tuzlukaya, 2020. "Determination Of The Benefits And Risks Of Peer-To-Peer (P2p) Lending: A Social Network Teory Approach," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 131-143.
    19. Giudici, Paolo & Raffinetti, Emanuela, 2023. "SAFE Artificial Intelligence in finance," Finance Research Letters, Elsevier, vol. 56(C).
    20. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    21. Yeh, Jen-Yin & Chiu, Hsin-Yu & Huang, Jhih-Huei, 2024. "Predicting failure of P2P lending platforms through machine learning: The case in China," Finance Research Letters, Elsevier, vol. 59(C).
    22. Juanjuan Zhang & Peng Liu, 2012. "Rational Herding in Microloan Markets," Management Science, INFORMS, vol. 58(5), pages 892-912, May.
    23. Liu, Zhengchi & Shang, Jennifer & Wu, Shin-yi & Chen, Pei-yu, 2020. "Social collateral, soft information and online peer-to-peer lending: A theoretical model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 428-438.
    24. Liu, Yiting & Baals, Lennart John & Osterrieder, Jörg & Hadji-Misheva, Branka, 2024. "Network centrality and credit risk: A comprehensive analysis of peer-to-peer lending dynamics," Finance Research Letters, Elsevier, vol. 63(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunghun Chung & Keongtae Kim & Chul Ho Lee & Wonseok Oh, 2023. "Interdependence between online peer‐to‐peer lending and cryptocurrency markets and its effects on financial inclusion," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1939-1957, June.
    2. Davaadorj, Zagdbazar, 2024. "The influence of the digital divide on peer-to-peer lending outcomes," Finance Research Letters, Elsevier, vol. 61(C).
    3. Li, Yuelei & Hao, Aiting & Zhang, Xiaotao & Xiong, Xiong, 2018. "Network topology and systemic risk in Peer-to-Peer lending market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 118-130.
    4. Yanhong Guo & Shuai Jiang & Wenjun Zhou & Chunyu Luo & Hui Xiong, 2021. "A predictive indicator using lender composition for loan evaluation in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    5. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    6. José María Liberti & Mitchell A. Petersen, 2018. "Information: Hard and Soft," NBER Working Papers 25075, National Bureau of Economic Research, Inc.
    7. Tobias Berg & Andreas Fuster & Manju Puri, 2022. "FinTech Lending," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 187-207, November.
    8. Bertsch, Christoph & Hull, Isaiah & Qi, Yingjie & Zhang, Xin, 2020. "Bank misconduct and online lending," Journal of Banking & Finance, Elsevier, vol. 116(C).
    9. Zaiyan Wei & Mingfeng Lin, 2017. "Market Mechanisms in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 63(12), pages 4236-4257, December.
    10. Oleksandr Talavera & Haofeng Xu, 2018. "Role of Verification in Peer-to-Peer Lending," Working Papers 2018-25, Swansea University, School of Management.
    11. Chava, Sudheer & Ganduri, Rohan & Paradkar, Nikhil & Zhang, Yafei, 2021. "Impact of marketplace lending on consumers’ future borrowing capacities and borrowing outcomes," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1186-1208.
    12. Belleflamme, Paul & Omrani, Nessrine & Peitz, Martin, 2015. "The economics of crowdfunding platforms," Information Economics and Policy, Elsevier, vol. 33(C), pages 11-28.
    13. Ho, Kung-Cheng & Gu, Yan & Yan, Cheng & Gozgor, Giray, 2024. "Peer effects in the online peer-to-peer lending market: Ex-ante selection and ex-post learning," International Review of Financial Analysis, Elsevier, vol. 92(C).
    14. Wei Zhang & Yingxiu Zhao & Pengfei Wang & Dehua Shen, 2020. "Investor Sentiment and the Return Rate of P2P Lending Platform," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 97-113, March.
    15. Lv, Panpan & Xiong, Hu, 2022. "Can FinTech improve corporate investment efficiency? Evidence from China," Research in International Business and Finance, Elsevier, vol. 60(C).
    16. Bollaert, Helen & Lopez-de-Silanes, Florencio & Schwienbacher, Armin, 2021. "Fintech and access to finance," Journal of Corporate Finance, Elsevier, vol. 68(C).
    17. Davaadorj, Zagdbazar & Enkhtaivan, Bolortuya & Lu, Wenling, 2024. "The role of job titles in online peer-to-peer lending: An empirical investigation on skilled borrowers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    18. Chen, Xiao & Huang, Bihong & Shaban, Mohamed, 2022. "Naïve or sophisticated? Information disclosure and investment decisions in peer to peer lending," Journal of Corporate Finance, Elsevier, vol. 77(C).
    19. Leite, Rodrigo & Mendes, Layla & Camelo, Emmanuel, 2024. "Innovating microcredit: how fintechs change the field," Journal of Economics and Business, Elsevier, vol. 128(C).
    20. Alexander W. Butler & Jess Cornaggia & Umit G. Gurun, 2017. "Do Local Capital Market Conditions Affect Consumers’ Borrowing Decisions?," Management Science, INFORMS, vol. 63(12), pages 4175-4187, December.

    More about this item

    Keywords

    Microloans; Credit markets; Peer effect; Funding success; Social network; Digital footprints;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:66:y:2024:i:c:s1544612324006810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.