IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v157y2023ics0148296322010323.html
   My bibliography  Save this article

Consumer-Driven racial stigmatization: The moderating role of race in online consumer-to-consumer reviews

Author

Listed:
  • Azer, Jaylan
  • Anker, Thomas
  • Taheri, Babak
  • Tinsley, Ross

Abstract

Marketing studies highlight the importance of recognizing different cultures and suggest that race plays an integral role in the functioning and ideological underpinnings of marketplace actions. Nevertheless, this role remains understudied in research on online consumer-to-consumer (C2C) interactions. Guided by extant literature and drawing on critical race theory, this study conducts two experimental studies that show how the race of online consumer reviewers influences other consumers’ interpretation of the quality of the reviews. This study contributes to the marketing literature by extending the existing knowledge of racial stigmatization and bias found in marketing communications to C2C exchanges. An understanding of the role, scope, and impact of consumer-driven stigmatization is of growing importance due to the growing empowerment of consumers in the business ecosystem. Regulatory frameworks are designed to protect consumers from unfair market practices on the part of firms and businesses. However, C2C interaction is a largely unregulated territory where our study demonstrates that entrenched racial stigmatization may still exist. The study findings reveal important implications and directions for future research.

Suggested Citation

  • Azer, Jaylan & Anker, Thomas & Taheri, Babak & Tinsley, Ross, 2023. "Consumer-Driven racial stigmatization: The moderating role of race in online consumer-to-consumer reviews," Journal of Business Research, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:jbrese:v:157:y:2023:i:c:s0148296322010323
    DOI: 10.1016/j.jbusres.2022.113567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296322010323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.113567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farmaki, Anna & Olya, Hossein & Taheri, Babak, 2021. "Unpacking the complex interactions among customers in online fan pages," Journal of Business Research, Elsevier, vol. 125(C), pages 164-176.
    2. Lu, Shuya & Wu, Jianan & Tseng, Shih-Lun (Allen), 2018. "How Online Reviews Become Helpful: A Dynamic Perspective," Journal of Interactive Marketing, Elsevier, vol. 44(C), pages 17-28.
    3. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    4. Benjamin Edelman & Michael Luca & Dan Svirsky, 2017. "Racial Discrimination in the Sharing Economy: Evidence from a Field Experiment," American Economic Journal: Applied Economics, American Economic Association, vol. 9(2), pages 1-22, April.
    5. Filieri, Raffaele & Alguezaui, Salma & McLeay, Fraser, 2015. "Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth," Tourism Management, Elsevier, vol. 51(C), pages 174-185.
    6. Kim, Jong Min & Jun, Mina & Kim, Chung K., 2018. "The Effects of Culture on Consumers' Consumption and Generation of Online Reviews," Journal of Interactive Marketing, Elsevier, vol. 43(C), pages 134-150.
    7. Azer, Jaylan & Ranaweera, Chatura, 2022. "Former customers’ E-WOM in social media platforms: An investigation of motives, network size and social ties," Journal of Business Research, Elsevier, vol. 146(C), pages 118-133.
    8. Branstad, Are & Solem, Birgit A., 2020. "Emerging theories of consumer-driven market innovation, adoption, and diffusion: A selective review of consumer-oriented studies," Journal of Business Research, Elsevier, vol. 116(C), pages 561-571.
    9. Nanne, Annemarie J. & Antheunis, Marjolijn L. & van der Lee, Chris G. & Postma, Eric O. & Wubben, Sander & van Noort, Guda, 2020. "The Use of Computer Vision to Analyze Brand-Related User Generated Image Content," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 156-167.
    10. Vilnai-Yavetz, Iris & Tifferet, Sigal, 2015. "A Picture Is Worth a Thousand Words: Segmenting Consumers by Facebook Profile Images," Journal of Interactive Marketing, Elsevier, vol. 32(C), pages 53-69.
    11. Visentin, Marco & Pizzi, Gabriele & Pichierri, Marco, 2019. "Fake News, Real Problems for Brands: The Impact of Content Truthfulness and Source Credibility on consumers' Behavioral Intentions toward the Advertised Brands," Journal of Interactive Marketing, Elsevier, vol. 45(C), pages 99-112.
    12. Liu, Angela Xia & Xie, Ying & Zhang, Jurui, 2019. "It's Not Just What You Say, But How You Say It: The Effect of Language Style Matching on Perceived Quality of Consumer Reviews," Journal of Interactive Marketing, Elsevier, vol. 46(C), pages 70-86.
    13. Huff, Aimee Dinnin & Barnhart, Michelle, 2022. "UNRAVEL-ing gnarly knots: A path for researching market-entangled wicked social problems," Journal of Business Research, Elsevier, vol. 144(C), pages 717-727.
    14. David Crockett, 2017. "Paths to Respectability: Consumption and Stigma Management in the Contemporary Black Middle Class," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(3), pages 554-581.
    15. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    16. Joseph K. Goodman & Gabriele Paolacci, 2017. "Crowdsourcing Consumer Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(1), pages 196-210.
    17. Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
    18. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Essig, Richard A., 2024. "The preference for users to experts in the domain of online product ratings," Journal of Business Research, Elsevier, vol. 173(C).
    2. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Li Jie & Xue Wenyi & Yang Fang & Li Yakun, 2017. "An Integrated Research Framework for Effect of EWOM," Journal of Systems Science and Information, De Gruyter, vol. 5(4), pages 343-355, August.
    4. Gang Chen & Lihua Huang & Shuaiyong Xiao & Chenghong Zhang & Huimin Zhao, 2024. "Attending to Customer Attention: A Novel Deep Learning Method for Leveraging Multimodal Online Reviews to Enhance Sales Prediction," Information Systems Research, INFORMS, vol. 35(2), pages 829-849, June.
    5. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    6. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    7. Hyunwoo Hwangbo & Jonghyuk Kim, 2019. "A Text Mining Approach for Sustainable Performance in the Film Industry," Sustainability, MDPI, vol. 11(11), pages 1-16, June.
    8. Brad Greenwood & Idris Adjerid & Corey M. Angst & Nathan L. Meikle, 2022. "How Unbecoming of You: Online Experiments Uncovering Gender Biases in Perceptions of Ridesharing Performance," Journal of Business Ethics, Springer, vol. 175(3), pages 499-518, January.
    9. Roma, Paolo & Aloini, Davide, 2019. "How does brand-related user-generated content differ across social media? Evidence reloaded," Journal of Business Research, Elsevier, vol. 96(C), pages 322-339.
    10. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    11. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    12. Zhen Li & Fangzhou Li & Jing Xiao & Zhi Yang, 2020. "Topic Features in Negative Customer Reviews: Evidence Based on Text Data Mining," The Review of Socionetwork Strategies, Springer, vol. 14(1), pages 19-40, April.
    13. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    14. Manes, Eran & Tchetchik, Anat, 2018. "The role of electronic word of mouth in reducing information asymmetry: An empirical investigation of online hotel booking," Journal of Business Research, Elsevier, vol. 85(C), pages 185-196.
    15. Janina Seutter & Kristin Kutzner & Maren Stadtländer & Dennis Kundisch & Ralf Knackstedt, 2023. "“Sorry, too much information”—Designing online review systems that support information search and processing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-19, December.
    16. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    17. Tingting Nian & Yuheng Hu & Cheng Chen, 2021. "Examining the Impact of Television-Program-Induced Emotions on Online Word-of-Mouth Toward Television Advertising," Information Systems Research, INFORMS, vol. 32(2), pages 605-632, June.
    18. Zhen Li & Aoi Shimizu, 2018. "Impact of Online Customer Reviews on Sales Outcomes: An Empirical Study Based on Prospect Theory," The Review of Socionetwork Strategies, Springer, vol. 12(2), pages 135-151, December.
    19. Reckmann, Tobias, 2017. "Intellectual Structure and Emancipation of Word of Mouth Research: A Bibliometric Analysis of a Multidisciplinary Research Field," EconStor Preprints 179913, ZBW - Leibniz Information Centre for Economics.
    20. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:157:y:2023:i:c:s0148296322010323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.