IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i3d10.1007_s10660-022-09650-9.html
   My bibliography  Save this article

Antecedents and consequences of the key opinion leader status: an econometric and machine learning approach

Author

Listed:
  • Yanni Ping

    (The Peter J. Tobin College of Business, St. John’s University)

  • Chelsey Hill

    (Feliciano School of Business, Montclair State University)

  • Yun Zhu

    (The Peter J. Tobin College of Business, St. John’s University)

  • Jorge Fresneda

    (New Jersey Institute of Technology)

Abstract

Key Opinion Leaders (KOLs) have an undeniable influence on businesses. Many online review communities, such as Yelp, give KOL users prominent status in their communities as cues of source trustworthiness. Using both econometric analysis and machine learning methods, we adopt an antecedents and consequences framework to investigate the drivers of KOL status and their economic impact on businesses. We find that a user’s social activity is more important in determining KOL status than the reviews themselves. On the consequences side, the paper shows that the first KOL review significantly boosts sales, regardless of the actual rating assigned by the KOL. After confirming this sales boost, we use random forest regression to predict sales using KOL review characteristics, including text. It is found that the number of KOL reviews as the most influential feature in predicting sales. This research contributes to the existing literature by adding a more granular, holistic investigation into KOLs in online consumer review communities.

Suggested Citation

  • Yanni Ping & Chelsey Hill & Yun Zhu & Jorge Fresneda, 2023. "Antecedents and consequences of the key opinion leader status: an econometric and machine learning approach," Electronic Commerce Research, Springer, vol. 23(3), pages 1459-1484, September.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:3:d:10.1007_s10660-022-09650-9
    DOI: 10.1007/s10660-022-09650-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09650-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09650-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Shuya & Wu, Jianan & Tseng, Shih-Lun (Allen), 2018. "How Online Reviews Become Helpful: A Dynamic Perspective," Journal of Interactive Marketing, Elsevier, vol. 44(C), pages 17-28.
    2. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    3. Fang, Bin & Ye, Qiang & Kucukusta, Deniz & Law, Rob, 2016. "Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics," Tourism Management, Elsevier, vol. 52(C), pages 498-506.
    4. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    5. Bart de Langhe & Philip M. Fernbach & Donald R. Lichtenstein, 2016. "Navigating by the Stars: Investigating the Actual and Perceived Validity of Online User Ratings," Journal of Consumer Research, Oxford University Press, vol. 42(6), pages 817-833.
    6. Xianghua Lu & Sulin Ba & Lihua Huang & Yue Feng, 2013. "Promotional Marketing or Word-of-Mouth? Evidence from Online Restaurant Reviews," Information Systems Research, INFORMS, vol. 24(3), pages 596-612, September.
    7. Kaiquan Xu & Jason Chan & Anindya Ghose & Sang Pil Han, 2017. "Battle of the Channels: The Impact of Tablets on Digital Commerce," Management Science, INFORMS, vol. 63(5), pages 1469-1492, May.
    8. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    9. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    10. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    11. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    12. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    13. Alton Y.K. Chua & Snehasish Banerjee, 2015. "Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 354-362, February.
    14. Casaló, Luis V. & Flavián, Carlos & Ibáñez-Sánchez, Sergio, 2020. "Influencers on Instagram: Antecedents and consequences of opinion leadership," Journal of Business Research, Elsevier, vol. 117(C), pages 510-519.
    15. Paul A. Pavlou & Angelika Dimoka, 2006. "The Nature and Role of Feedback Text Comments in Online Marketplaces: Implications for Trust Building, Price Premiums, and Seller Differentiation," Information Systems Research, INFORMS, vol. 17(4), pages 392-414, December.
    16. Jiménez, Fernando R. & Mendoza, Norma A., 2013. "Too Popular to Ignore: The Influence of Online Reviews on Purchase Intentions of Search and Experience Products," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 226-235.
    17. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    4. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    5. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    6. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    7. Srikanth Parameswaran & Pubali Mukherjee & Rohit Valecha, 2023. "I Like My Anonymity: An Empirical Investigation of the Effect of Multidimensional Review Text and Role Anonymity on Helpfulness of Employer Reviews," Information Systems Frontiers, Springer, vol. 25(2), pages 853-870, April.
    8. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    9. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    10. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    11. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    12. Supriyo Mandal & Abyayananda Maiti, 2022. "Network promoter score (NePS): An indicator of product sales in E-commerce retailing sector," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1327-1349, September.
    13. Ravula, Prashanth & Bhatnagar, Amit & Gauri, Dinesh K, 2023. "Role of gender in the creation and persuasiveness of online reviews," Journal of Business Research, Elsevier, vol. 154(C).
    14. Young Kwark & Gene Moo Lee & Paul A. Pavlou & Liangfei Qiu, 2021. "On the Spillover Effects of Online Product Reviews on Purchases: Evidence from Clickstream Data," Information Systems Research, INFORMS, vol. 32(3), pages 895-913, September.
    15. Arenas-Márquez, F.J. & Martínez-Torres, M.R. & Toral, S.L., 2021. "How can trustworthy influencers be identified in electronic word-of-mouth communities?," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    16. Lien Thi Kim Nguyen & Hao-Hsuan Chung & Kristine Velasquez Tuliao & Tom M. Y. Lin, 2020. "Using XGBoost and Skip-Gram Model to Predict Online Review Popularity," SAGE Open, , vol. 10(4), pages 21582440209, December.
    17. Sergio M. Fernández-Miguélez & Miguel Díaz-Puche & Juan A. Campos-Soria & Federico Galán-Valdivieso, 2020. "The Impact of Social Media on Restaurant Corporations’ Financial Performance," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    18. Li, Kunlin & Chen, Yuhan & Zhang, Liyi, 2020. "Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    19. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
    20. Cai, Xiaowei & Cebollada, Javier & Cortiñas, Mónica, 2023. "Impact of seller- and buyer-created content on product sales in the electronic commerce platform: The role of informativeness, readability, multimedia richness, and extreme valence," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:3:d:10.1007_s10660-022-09650-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.