IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v107y2017i5p476-80.html
   My bibliography  Save this article

Does Machine Learning Automate Moral Hazard and Error?

Author

Listed:
  • Sendhil Mullainathan
  • Ziad Obermeyer

Abstract

Machine learning tools are beginning to be deployed en masse in health care. While the statistical underpinnings of these techniques have been questioned with regard to causality and stability, we highlight a different concern here, relating to measurement issues. A characteristic feature of health data, unlike other applications of machine learning, is that neither y nor x is measured perfectly. Far from a minor nuance, this can undermine the power of machine learning algorithms to drive change in the health care system--and indeed, can cause them to reproduce and even magnify existing errors in human judgment.

Suggested Citation

  • Sendhil Mullainathan & Ziad Obermeyer, 2017. "Does Machine Learning Automate Moral Hazard and Error?," American Economic Review, American Economic Association, vol. 107(5), pages 476-480, May.
  • Handle: RePEc:aea:aecrev:v:107:y:2017:i:5:p:476-80
    Note: DOI: 10.1257/aer.p20171084
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/articles?id=10.1257/aer.p20171084
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=kAluHZHOjWCFwcFWHMZdiA4GAhqjztC6
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wayne Xinwei Wan & Thies Lindenthal, 2023. "Testing machine learning systems in real estate," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(3), pages 754-778, May.
    2. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    3. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," CEPR Discussion Papers 15660, C.E.P.R. Discussion Papers.
    4. Ziyuan Wang, 2023. "Spatial Differentiation Characteristics of Rural Areas Based on Machine Learning and GIS Statistical Analysis—A Case Study of Yongtai County, Fuzhou City," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    5. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    6. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    7. Songul Tolan, 2018. "Fair and Unbiased Algorithmic Decision Making: Current State and Future Challenges," JRC Working Papers on Digital Economy 2018-10, Joint Research Centre.
    8. Markus Eyting, 2020. "A Random Forest a Day Keeps the Doctor Away," Working Papers 2026, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Yves Paul Vincent Mbous & Todd Brothers & Mohammad A. Al-Mamun, 2023. "Medication Regimen Complexity Index Score at Admission as a Predictor of Inpatient Outcomes: A Machine Learning Approach," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    10. Bo Cowgill, 2019. "Bias and Productivity in Humans and Machines," Upjohn Working Papers 19-309, W.E. Upjohn Institute for Employment Research.
    11. Bauer, Kevin & Pfeuffer, Nicolas & Abdel-Karim, Benjamin M. & Hinz, Oliver & Kosfeld, Michael, 2020. "The terminator of social welfare? The economic consequences of algorithmic discrimination," SAFE Working Paper Series 287, Leibniz Institute for Financial Research SAFE.
    12. Bardey, David & De Donder , Philippe & Leroux, Marie-Louise, 2024. "Incentivizing Physicians' Diagnostic Effort and Test with Moral Hazard and Adverse Selection," Documentos CEDE 21269, Universidad de los Andes, Facultad de Economía, CEDE.
    13. Navitha Singh Sewpersadh, 2023. "Disruptive business value models in the digital era," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-27, December.
    14. Sendhil Mullainathan & Ziad Obermeyer, 2023. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(2), pages 679-727.
    15. Laura Blattner & Scott Nelson & Jann Spiess, 2021. "Unpacking the Black Box: Regulating Algorithmic Decisions," Papers 2110.03443, arXiv.org, revised May 2024.
    16. van Giffen, Benjamin & Herhausen, Dennis & Fahse, Tobias, 2022. "Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods," Journal of Business Research, Elsevier, vol. 144(C), pages 93-106.
    17. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    18. Jill Walker Rettberg, 2020. "Situated data analysis: a new method for analysing encoded power relationships in social media platforms and apps," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    19. Wan, Wayne Xinwei & Lindenthal, Thies, 2022. "Towards accountability in machine learning applications: A system-testing approach," ZEW Discussion Papers 22-001, ZEW - Leibniz Centre for European Economic Research.

    More about this item

    JEL classification:

    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • I11 - Health, Education, and Welfare - - Health - - - Analysis of Health Care Markets
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:107:y:2017:i:5:p:476-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.