IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11157-d908188.html
   My bibliography  Save this article

Modeling and Feature Analysis of Air Traffic Complexity Propagation

Author

Listed:
  • Hongyong Wang

    (College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China)

  • Ping Xu

    (College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China)

  • Fengwei Zhong

    (Air Traffic Management Bureau of China Civil Aviation Administration, Beijing 100015, China)

Abstract

Air traffic complexity, an essential attribute of air traffic situation, is the main driving force of workload for air-traffic controllers and is the key to achieving refined air traffic control. The existing air traffic complexity studies are based on static network, ignoring the dynamic evolution of between-aircraft proximity relations. Research on such evolution course and propagation characteristics will help to comprehensively explore the mechanisms of complexity formation. Herein, an air traffic complexity propagation research method based on temporal networking and disease propagation modeling is proposed. First, a temporal network is built with aircraft as nodes and between-aircraft proximity relations as edges. Second, the disease propagation model is introduced to simulate the evolution course of between-aircraft proximity relations, and the propagation model is solved using Runge–Kutta algorithm and particle swarm optimization. Third, based on the solved results of the propagation model, the aircraft are divided into three groups with high, medium, and low propagation capability, respectively. Finally, the effects of different factors on the propagation course are analyzed using multivariate linear regression. Real data validation shows the propagation of high-propagation capability aircraft is significantly affected by duration, and the temporal-correlation coefficient. The propagation of medium-propagation capability aircraft is significantly affected by duration and the clustering degree. By adjusting the influencing factors, the air traffic complexity propagation process can be effectively controlled.

Suggested Citation

  • Hongyong Wang & Ping Xu & Fengwei Zhong, 2022. "Modeling and Feature Analysis of Air Traffic Complexity Propagation," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11157-:d:908188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petter Holme, 2015. "Modern temporal network theory: a colloquium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(9), pages 1-30, September.
    2. Jiang, Jiu-Lei & Fang, Hui & Li, Sheng-Qing & Li, Wei-Min, 2022. "Identifying important nodes for temporal networks based on the ASAM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    3. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    4. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Hossain, Md. Murad & Alam, Sameer, 2017. "A complex network approach towards modeling and analysis of the Australian Airport Network," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bombelli, Alessandro & Sallan, Jose Maria, 2023. "Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach," Journal of Transport Geography, Elsevier, vol. 107(C).
    2. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Panayotis Christidis & Álvaro Gomez Losada, 2019. "Email Based Institutional Network Analysis: Applications and Risks," Social Sciences, MDPI, vol. 8(11), pages 1-14, November.
    4. Dantsuji, Takao & Sugishita, Kashin & Fukuda, Daisuke, 2023. "Understanding changes in travel patterns during the COVID-19 outbreak in the three major metropolitan areas of Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    5. Xuelei Meng & Yahui Wang & Limin Jia & Lei Li, 2020. "Reliability Optimization of a Railway Network," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    6. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    7. Güner, Samet & Antunes, Jorge Junio Moreira & Seçkin Codal, Keziban & Wanke, Peter, 2024. "Network centrality driven airport efficiency: A weight-restricted network DEA," Journal of Air Transport Management, Elsevier, vol. 116(C).
    8. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    9. Mathilde Vernet & Yoann Pigné & Éric Sanlaville, 2023. "A study of connectivity on dynamic graphs: computing persistent connected components," 4OR, Springer, vol. 21(2), pages 205-233, June.
    10. Karan, Rituraj & Biswal, Bibhu, 2017. "A model for evolution of overlapping community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 380-390.
    11. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    13. Sindhuja Ranganathan & Mikko Kivelä & Juho Kanniainen, 2018. "Dynamics of investor spanning trees around dot-com bubble," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
    14. Zhang, Yahua & Zhang, Anming & Zhu, Zhenran & Wang, Kun, 2017. "Connectivity at Chinese airports: The evolution and drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 490-508.
    15. Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    16. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
    17. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    18. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    19. Andrew Mellor, 2019. "Event Graphs: Advances And Applications Of Second-Order Time-Unfolded Temporal Network Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-26, May.
    20. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11157-:d:908188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.