IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v93y2021ics0969699721000284.html
   My bibliography  Save this article

Airport and route classification by modelling flight delay propagation

Author

Listed:
  • Kim, Myeonghyeon
  • Park, Sunwook

Abstract

Flight delay can be divided into the root and propagated delays for identification and analysis of airports/routes that have a great influence on actual flight delay using flight operations raw data (tower logs) for South Korean domestic flights. In addition, the presented concept of “generated delay†classifies airports as affecting other airport delays or affected by other airport delays. The generated delay refers to the delay time at a particular airport/route, and this delay thereafter actually propagates to other airports/routes. In this study, the generated and propagated delays were displayed on a two-dimensional graph, and the airports/routes were grouped according to delay characteristics. Group A represented airports with high generated and propagated delays, and group B represented airports that are highly affected by delays of preceding airports/routes. Group C represents airports where newly formed delays affect other airport delays, but these airports mitigate delays from other airports. Airports in group D have relatively low delays and propagation. Thus, we targeted airports belonging to groups A and C because of their delay propagation impact on other routes/airports, which must be reduced by decreasing the root delay from targeted routes/airports. Among the airports, Jeju international airport (CJU) had the highest average delay time and propagated flight delay time with similar averaged generated delay times. Among the routes, departure flights from various airports to CJU had significant propagation effects on the subsequent flights. CJU and related routes have a very large impact on domestic flight delays because South Korean domestic airline routes are concentrated on CJU. However, there has been no quantitative analysis, and it is meaningful that the quantitative analysis results were presented in this study. In addition, we suggest that other airports such as GMP (Gimpo), CJJ (Cheongju), WJU (Wonju), and KUV (Gunsan) have a significant impact on domestic flight delays.

Suggested Citation

  • Kim, Myeonghyeon & Park, Sunwook, 2021. "Airport and route classification by modelling flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 93(C).
  • Handle: RePEc:eee:jaitra:v:93:y:2021:i:c:s0969699721000284
    DOI: 10.1016/j.jairtraman.2021.102045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699721000284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2021.102045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wesonga, Ronald & Nabugoomu, Fabian & Jehopio, Peter, 2012. "Parameterized framework for the analysis of probabilities of aircraft delay at an airport," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 1-4.
    2. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    3. Sun, Joo Yeon, 2020. "Airport curfew and scheduling differentiation: Domestic versus international competition," Journal of Air Transport Management, Elsevier, vol. 87(C).
    4. Hao, Lu & Hansen, Mark & Zhang, Yu & Post, Joseph, 2014. "New York, New York: Two ways of estimating the delay impact of New York airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 245-260.
    5. Hansen, Mark, 2002. "Micro-level analysis of airport delay externalities using deterministic queuing models: a case study," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 73-87.
    6. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    7. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    8. Abdelghany, Khaled F. & S. Shah, Sharmila & Raina, Sidhartha & Abdelghany, Ahmed F., 2004. "A model for projecting flight delays during irregular operation conditions," Journal of Air Transport Management, Elsevier, vol. 10(6), pages 385-394.
    9. Santos, Bruno F. & Wormer, Maarten M.E.C. & Achola, Thomas A.O. & Curran, Richard, 2017. "Airline delay management problem with airport capacity constraints and priority decisions," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 34-44.
    10. Xiong, Jing & Hansen, Mark, 2013. "Modelling airline flight cancellation decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 64-80.
    11. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    12. AhmadBeygi, Shervin & Cohn, Amy & Guan, Yihan & Belobaba, Peter, 2008. "Analysis of the potential for delay propagation in passenger airline networks," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 221-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    2. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Khan, Waqar Ahmed & Chung, Sai-Ho & Eltoukhy, Abdelrahman E.E. & Khurshid, Faisal, 2024. "A novel parallel series data-driven model for IATA-coded flight delays prediction and features analysis," Journal of Air Transport Management, Elsevier, vol. 114(C).
    4. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Kim, Myeonghyeon & Sohn, Jeongwoong, 2022. "Passenger, airline, and policy responses to the COVID-19 crisis: The case of South Korea," Journal of Air Transport Management, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    2. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    4. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    6. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    7. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    8. Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    9. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    10. Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).
    11. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    12. Khan, Waqar Ahmed & Chung, Sai-Ho & Eltoukhy, Abdelrahman E.E. & Khurshid, Faisal, 2024. "A novel parallel series data-driven model for IATA-coded flight delays prediction and features analysis," Journal of Air Transport Management, Elsevier, vol. 114(C).
    13. Lin, Pei-Chun, 2023. "The propagation of European airports’ on-time performance and on-time flights via air connectivity prior to the Covid-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 109(C).
    14. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    15. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.
    16. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    17. Chen, Gong & Fricke, Hartmut & Okhrin, Ostap & Rosenow, Judith, 2024. "Flight delay propagation inference in air transport networks using the multilayer perceptron," Journal of Air Transport Management, Elsevier, vol. 114(C).
    18. Zhe Zheng & Wenbin Wei & Bo Zou & Minghua Hu, 2020. "How Late Does Your Flight Depart? A Quantile Regression Approach for a Chinese Case Study," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    19. Jingyi Qu & Shixing Wu & Jinjie Zhang, 2023. "Flight Delay Propagation Prediction Based on Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    20. Lonzius, Christopher & Lange, Anne, 2024. "Aircraft routing clusters and their impact on airline delays," Journal of Air Transport Management, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:93:y:2021:i:c:s0969699721000284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.