IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v220y2021i1p63-85.html
   My bibliography  Save this article

Identification and estimation of the SEIRD epidemic model for COVID-19

Author

Listed:
  • Korolev, Ivan

Abstract

This paper studies the SEIRD epidemic model for COVID-19. First, I show that the model is poorly identified from the observed number of deaths and confirmed cases. There are many sets of parameters that are observationally equivalent in the short run but lead to markedly different long run forecasts. Second, I show that the basic reproduction number R0 can be identified from the data, conditional on epidemiologic parameters, and propose several nonlinear SUR approaches to estimate R0. I examine the performance of these methods using Monte Carlo studies and demonstrate that they yield fairly accurate estimates of R0. Next, I apply these methods to estimate R0 for the US, California, and Japan, and document heterogeneity in the value of R0 across regions. My estimation approach accounts for possible underreporting of the number of cases. I demonstrate that if one fails to take underreporting into account and estimates R0 from the reported cases data, the resulting estimate of R0 may be biased downward and the resulting forecasts may exaggerate the long run number of deaths. Finally, I discuss how auxiliary information from random tests can be used to calibrate the initial parameters of the model and narrow down the range of possible forecasts of the future number of deaths.

Suggested Citation

  • Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
  • Handle: RePEc:eee:econom:v:220:y:2021:i:1:p:63-85
    DOI: 10.1016/j.jeconom.2020.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620302621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manski, Charles F. & Molinari, Francesca, 2021. "Estimating the COVID-19 infection rate: Anatomy of an inference problem," Journal of Econometrics, Elsevier, vol. 220(1), pages 181-192.
    2. Facundo Piguillem & Liyan Shi, 2022. "Optimal Covid-19 Quarantine and Testing Policies," The Economic Journal, Royal Economic Society, vol. 132(647), pages 2534-2562.
    3. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    4. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    5. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    6. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    7. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    8. Andrew Atkeson, 2020. "What Will be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease Scenarios," Staff Report 595, Federal Reserve Bank of Minneapolis.
    9. Andrew Atkeson, 2020. "How Deadly is COVID-19? Understanding the Difficulties with Estimation of its Fatality Rate," Staff Report 598, Federal Reserve Bank of Minneapolis.
    10. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    11. Alexis Akira Toda, 2020. "Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact," Papers 2003.11221, arXiv.org, revised Mar 2020.
    12. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    13. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    14. Gallant, A. Ronald, 1975. "Seemingly unrelated nonlinear regressions," Journal of Econometrics, Elsevier, vol. 3(1), pages 35-50, February.
    15. Christopher Avery & William Bossert & Adam Clark & Glenn Ellison & Sara Fisher Ellison, 2020. "Policy Implications of Models of the Spread of Coronavirus: Perspectives and Opportunities for Economists," NBER Working Papers 27007, National Bureau of Economic Research, Inc.
    16. Christopher Avery & William Bossert & Adam Thomas Clark & Glenn Ellison & Sara Ellison, 2020. "Policy Implications of Models of the Spread of Coronavirus: Perspectives and Opportunities for Economists," CESifo Working Paper Series 8293, CESifo.
    17. Glenn Ellison, 2020. "Implications of Heterogeneous SIR Models for Analyses of COVID-19," NBER Working Papers 27373, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    2. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    3. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    4. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    5. Giagheddu, Marta & Papetti, Andrea, 2023. "The macroeconomics of age-varying epidemics," European Economic Review, Elsevier, vol. 151(C).
    6. Attar, M. Aykut & Tekin-Koru, Ayça, 2022. "Latent social distancing: Identification, causes and consequences," Economic Systems, Elsevier, vol. 46(1).
    7. Çakmaklı, Cem & Demiralp, Selva & Özcan, Şebnem Kalemli & Yeşiltaş, Sevcan & Yıldırım, Muhammed A., 2023. "COVID-19 and emerging markets: A SIR model, demand shocks and capital flows," Journal of International Economics, Elsevier, vol. 145(C).
    8. Glover, Andrew & Heathcote, Jonathan & Krueger, Dirk & Ríos-Rull, José-Víctor, 2023. "Health versus wealth: On the distributional effects of controlling a pandemic," Journal of Monetary Economics, Elsevier, vol. 140(C), pages 34-59.
    9. Sewon Hur, 2023. "The Distributional Effects Of Covid‐19 And Optimal Mitigation Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(1), pages 261-294, February.
    10. Andrew B. Abel & Stavros Panageas, 2020. "Social Distancing, Vaccination and the Paradoxical Optimality of an Endemic Equilibrium," NBER Working Papers 27742, National Bureau of Economic Research, Inc.
    11. Jacek Rothert & Ryan Brady & Michael Insler, 2020. "The Fragmented United States of America: The impact of scattered lock-down policies on country-wide infections," Departmental Working Papers 65, United States Naval Academy Department of Economics.
    12. Shami, Labib & Lazebnik, Teddy, 2022. "Economic aspects of the detection of new strains in a multi-strain epidemiological–mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    13. Jacek Rothert & Ryan Brady & Michael Insler, 2020. "Local containment policies and country-wide spread of Covid-19 in the United States: an epidemiological analysis," GRAPE Working Papers 48, GRAPE Group for Research in Applied Economics.
    14. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    15. Dizioli, Allan & Pinheiro, Roberto, 2021. "Information and inequality in the time of a pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    16. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    17. Michael Barnett & Greg Buchak & Constantine Yannelis, 2023. "Epidemic responses under uncertainty," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(2), pages 2208111120-, January.
    18. Victor Aguirregabiria & Jiaying Gu & Yao Luo & Pedro Mira, 2020. "A Dynamic Structural Model of Virus Diffusion and Network Production: A First Report," Working Papers tecipa-665, University of Toronto, Department of Economics.
    19. Huberts, Nick F.D. & Thijssen, Jacco J.J., 2023. "Optimal timing of non-pharmaceutical interventions during an epidemic," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1366-1389.
    20. Vandenbroucke Guillaume, 2022. "The Mechanics of Individually- and Socially-Optimal Decisions during an Epidemic," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 131-158, January.

    More about this item

    Keywords

    Parameter identification; COVID-19; SEIR model; Seemingly unrelated equations;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • I1 - Health, Education, and Welfare - - Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:220:y:2021:i:1:p:63-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.