IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v30y2014i3p464-476.html
   My bibliography  Save this article

Modeling and forecasting of Brazilian reservoir inflows via dynamic linear models

Author

Listed:
  • Lima, L.M. Marangon
  • Popova, E.
  • Damien, P.

Abstract

This work focuses on developing a forecasting model for the water inflow at an hydroelectric plant’s reservoir for operations planning. The planning horizon is 5 years in monthly steps. Due to the complex behavior of the monthly inflow time series we use a Bayesian dynamic linear model that incorporates seasonal and autoregressive components. We also use climate variables like monthly precipitation, El Niño and other indices as predictor variables when relevant. The Brazilian power system has 140 hydroelectric plants. Based on geographical considerations, these plants are collated by basin and classified into 15 groups that correspond to the major river basins, in order to reduce the dimension of the problem. The model is then tested for these 15 groups. Each group will have a different forecasting model that can best describe its unique seasonality and characteristics. The results show that the forecasting approach taken in this paper produces substantially better predictions than the current model adopted in Brazil (see Maceira & Damazio, 2006), leading to superior operations planning.

Suggested Citation

  • Lima, L.M. Marangon & Popova, E. & Damien, P., 2014. "Modeling and forecasting of Brazilian reservoir inflows via dynamic linear models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 464-476.
  • Handle: RePEc:eee:intfor:v:30:y:2014:i:3:p:464-476
    DOI: 10.1016/j.ijforecast.2013.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920701300174X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2013.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Marriott & Paul Newbold, 1998. "Bayesian Comparison of ARIMA and Stationary ARMA Models," International Statistical Review, International Statistical Institute, vol. 66(3), pages 323-336, December.
    2. Chen, Chunhang, 1997. "Robustness properties of some forecasting methods for seasonal time series: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 13(2), pages 269-280, June.
    3. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. Wu, Yu & Mullan, Katrina & Biggs, Trent & Caviglia-Harris, Jill L. & Harris, Daniel & Sills, Erin O., 2018. "Do Forests Provide Watershed Services to Local Populations in the Humid Tropics? Evidence from the Brazilian Amazon," 2018 Annual Meeting, August 5-7, Washington, D.C. 274012, Agricultural and Applied Economics Association.
    3. Pedram Pishgah Hadiyan & Ramtin Moeini & Eghbal Ehsanzadeh & Monire Karvanpour, 2022. "Trend Analysis of Water Inflow Into the Dam Reservoirs Under Future Conditions Predicted By Dynamic NAR and NARX Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2703-2723, June.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Pratyay Manna & Mohammed Zafar Anis & Prasun Das & Soumya Banerjee, 2019. "Probabilistic Modeling of Flood Hazard and its Risk Assessment for Eastern Region of India," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1615-1633, July.
    6. M. Rajesh & Sachdeva Anishka & Pansari Satyam Viksit & Srivastav Arohi & S. Rehana, 2023. "Improving Short-range Reservoir Inflow Forecasts with Machine Learning Model Combination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 75-90, January.
    7. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    8. Mohammad Babaei & Ramtin Moeini & Eghbal Ehsanzadeh, 2019. "Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (Case Study: Zayandehroud Dam Reservoir)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2203-2218, April.
    9. Huang, Xu & Maçaira, Paula Medina & Hassani, Hossein & Cyrino Oliveira, Fernando Luiz & Dhesi, Gurjeet, 2019. "Hydrological natural inflow and climate variables: Time and frequency causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 480-495.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    2. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    3. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    4. Mohammad Ebrahim Banihabib & Reihaneh Bandari & Richard C. Peralta, 2019. "Auto-Regressive Neural-Network Models for Long Lead-Time Forecasting of Daily Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 159-172, January.
    5. Konrad Bogner & Katharina Liechti & Luzi Bernhard & Samuel Monhart & Massimiliano Zappa, 2018. "Skill of Hydrological Extended Range Forecasts for Water Resources Management in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 969-984, February.
    6. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    7. Paulo Vitor Larroyd & Renata Pedrini & Felipe Beltrán & Gabriel Teixeira & Erlon Cristian Finardi & Lucas Borges Picarelli, 2022. "Dealing with Negative Inflows in the Long-Term Hydrothermal Scheduling Problem," Energies, MDPI, vol. 15(3), pages 1-19, February.
    8. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Yamin Ahmad & Adam Check & Ming Chien Lo, 2024. "Unit Roots in Macroeconomic Time Series: A Comparison of Classical, Bayesian and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2139-2173, June.
    11. Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
    12. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    13. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    14. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    15. Robert M. Kunst & Michael Reutter, 2000. "Decisions on Seasonal Unit Roots," CESifo Working Paper Series 286, CESifo.
    16. Felipe Nazaré & Luiz Barroso & Bernardo Bezerra, 2021. "A Probabilistic and Value-Based Planning Approach to Assess the Competitiveness between Gas-Fired and Renewables in Hydro-Dominated Systems: A Brazilian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, November.
    17. Brian Hanlon & Catherine Forbes, 2002. "Model Selection Criteria for Segmented Time Series from a Bayesian Approach to Information Compression," Monash Econometrics and Business Statistics Working Papers 8/02, Monash University, Department of Econometrics and Business Statistics.
    18. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    19. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    20. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:30:y:2014:i:3:p:464-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.