IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7281-d671528.html
   My bibliography  Save this article

A Probabilistic and Value-Based Planning Approach to Assess the Competitiveness between Gas-Fired and Renewables in Hydro-Dominated Systems: A Brazilian Case Study

Author

Listed:
  • Felipe Nazaré

    (Electrical Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro (PUC-RJ), Rio de Janeiro 22541-041, Brazil)

  • Luiz Barroso

    (Instituto de Investigación Tecnológica, Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, 28015 Madrid, Spain)

  • Bernardo Bezerra

    (Omega Geração S.A., R. Elvira Ferraz, 68, São Paulo 04552-040, Brazil)

Abstract

The main challenge with the penetration of variable renewable energy (VRE) in thermal-dominated systems has been the increase in the need for operating reserves, relying on dispatchable and flexible resources. In the case of hydro-dominated systems, the cost-effective flexibility provided by hydro-plants facilitates the penetration of VRE, but the compounded production variability of these resources challenges the integration of baseload gas-fired plants. The Brazilian power system illustrates this situation, in which the development of large associated gas fields economically depends on the operation of gas-fired plants. Given the current competitiveness of VRE, a natural question is the economic value and tradeoffs for expanding the system opting between baseload gas-fired generation and VRE in an already flexible hydropower system. This paper presents a methodology based on a multi-stage and stochastic capacity expansion model to estimate the optimal mix of baseload thermal power plants and VRE additions considering their contributions for security of supply, which includes peak, energy, and operating reserves, which are endogenously defined in a time-varying and sized in a dynamic way as well as adequacy constraints. The presented model calculates the optimal decision plan, allowing for the estimation of the economical tradeoffs between baseload gas and VRE supply considering their value for the required services to the system. This allows for a comparison between the integration costs of these technologies on the same basis, thus helping policymakers and system planners to better decide on the best way to integrate the gas resources in an electricity industry increasingly renewable. A case study based on a real industrial application is presented for the Brazilian power system.

Suggested Citation

  • Felipe Nazaré & Luiz Barroso & Bernardo Bezerra, 2021. "A Probabilistic and Value-Based Planning Approach to Assess the Competitiveness between Gas-Fired and Renewables in Hydro-Dominated Systems: A Brazilian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7281-:d:671528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xianzheng Zhou & Chuangxin Guo & Yifei Wang & Wanqi Li, 2017. "Optimal Expansion Co-Planning of Reconfigurable Electricity and Natural Gas Distribution Systems Incorporating Energy Hubs," Energies, MDPI, vol. 10(1), pages 1-22, January.
    2. Kristof De Vos & Nicolas Stevens & Olivier Devolder & Anthony Papavasiliou & Bob Hebb & James Matthys-Donnadieu, 2019. "Dynamic dimensioning approach for operations reserves: proof of concept in Belgium," LIDAM Reprints CORE 2993, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    4. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    5. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    6. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    7. De Vos, K. & Stevens, N. & Devolder, O. & Papavasiliou, A. & Hebb, B. & Matthys-Donnadieu, J., 2019. "Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium," Energy Policy, Elsevier, vol. 124(C), pages 272-285.
    8. Marreco, Juliana de Moraes & Carpio, Lucio Guido Tapia, 2006. "Flexibility valuation in the Brazilian power system: A real options approach," Energy Policy, Elsevier, vol. 34(18), pages 3749-3756, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dolf Gielen, 2022. "Energy Planning," Energies, MDPI, vol. 15(7), pages 1-6, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    2. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    3. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    6. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    7. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    9. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    10. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    11. Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2022. "Insights on designing effective and efficient frequency control arrangements from the Australian National Electricity Market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Hermans, Mathias & Bruninx, Kenneth & Van den Bergh, Kenneth & Poncelet, Kris & Delarue, Erik, 2021. "On the temporal granularity of joint energy-reserve markets in a high-RES system," Applied Energy, Elsevier, vol. 297(C).
    13. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Wang, Ni & Heijnen, Petra W. & Imhof, Pieter J., 2020. "A multi-actor perspective on multi-objective regional energy system planning," Energy Policy, Elsevier, vol. 143(C).
    15. Li, Binghui & Feng, Cong & Siebenschuh, Carlo & Zhang, Rui & Spyrou, Evangelia & Krishnan, Venkat & Hobbs, Benjamin F. & Zhang, Jie, 2022. "Sizing ramping reserve using probabilistic solar forecasts: A data-driven method," Applied Energy, Elsevier, vol. 313(C).
    16. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    17. Tsai, Chen-Hao & Figueroa-Acevedo, Armando & Boese, Maire & Li, Yifan & Mohan, Nihal & Okullo, James & Heath, Brandon & Bakke, Jordan, 2020. "Challenges of planning for high renewable futures: Experience in the U.S. midcontinent electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Bhavsar, S. & Pitchumani, R. & Ortega-Vazquez, M.A., 2021. "Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts," Applied Energy, Elsevier, vol. 293(C).
    19. Anthony Papavasiliou, 2021. "An Overview of Probabilistic Dimensioning of Frequency Restoration Reserves with a Focus on the Greek Electricity Market," Energies, MDPI, vol. 14(18), pages 1-19, September.
    20. Loisel, Rodica & Lemiale, Lionel, 2018. "Comparative energy scenarios: Solving the capacity sizing problem on the French Atlantic Island of Yeu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 54-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7281-:d:671528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.