IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i3d10.1007_s00180-019-00893-z.html
   My bibliography  Save this article

Periodic autoregressive models with closed skew-normal innovations

Author

Listed:
  • T. Manouchehri

    (Shiraz University)

  • A. R. Nematollahi

    (Shiraz University)

Abstract

This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.

Suggested Citation

  • T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00893-z
    DOI: 10.1007/s00180-019-00893-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00893-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00893-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, June.
    2. Novales, Alfonso & de Fruto, Rafael Flores, 1997. "Forecasting with periodic models A comparison with time invariant coefficient models," International Journal of Forecasting, Elsevier, vol. 13(3), pages 393-405, September.
    3. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    4. Broszkiewicz-Suwaj, E & Makagon, A & Weron, R & Wyłomańska, A, 2004. "On detecting and modeling periodic correlation in financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 196-205.
    5. Eugen Ursu & Pierre Duchesne, 2009. "On modelling and diagnostic checking of vector periodic autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 70-96, January.
    6. I. V. Basawa & Robert Lund, 2001. "Large Sample Properties of Parameter Estimates for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 651-663, November.
    7. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
    8. M. Sharafi & A. R. Nematollahi, 2016. "AR(1) model with skew-normal innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 1011-1029, November.
    9. Bondon, Pascal, 2009. "Estimation of autoregressive models with epsilon-skew-normal innovations," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1761-1776, September.
    10. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    11. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    12. Eugen Ursu & Kamil Feridun Turkman, 2012. "Periodic autoregressive model identification using genetic algorithms," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 398-405, May.
    13. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    14. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    15. A. R. Nematollahi & A. R. Soltani & M. R. Mahmoudi, 2017. "Periodically correlated modeling by means of the periodograms asymptotic distributions," Statistical Papers, Springer, vol. 58(4), pages 1267-1278, December.
    16. Shao, Q., 2006. "Mixture periodic autoregressive time series models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 609-618, March.
    17. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    18. Shawn Ni & Dongchu Sun, 2005. "Bayesian Estimates for Vector Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 105-117, January.
    19. W. K. Li & A. I. McLeod, 1988. "Arma Modelling With Non‐Gaussian Innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(2), pages 155-168, March.
    20. Franses, Philip Hans & Paap, Richard, 1994. "Model Selection in Periodic Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(4), pages 421-439, November.
    21. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    22. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaygysyz Guljanov & Willi Mutschler & Mark Trede, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," CQE Working Papers 10122, Center for Quantitative Economics (CQE), University of Muenster.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    2. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    3. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    4. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    5. A.S.M. Arroyo & A. de Juan Fern¨¢ndez, 2014. "Split-then-Combine Method for out-of-sample Combinations of Forecasts," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 3(1), pages 19-37, April.
    6. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    7. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    8. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    9. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    10. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    11. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    12. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    13. Francesco Battaglia & Domenico Cucina & Manuel Rizzo, 2020. "Detection and estimation of additive outliers in seasonal time series," Computational Statistics, Springer, vol. 35(3), pages 1393-1409, September.
    14. Franses, Ph.H.B.F. & Paap, R., 1999. "Forecasting with periodic autoregressive time series models," Econometric Institute Research Papers EI 9927-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    16. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    17. Clements, Michael & Smith, Jeremy, 1997. "Forecasting Seasonal Uk Consumption Components," Economic Research Papers 268761, University of Warwick - Department of Economics.
    18. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    19. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    20. Philip Hans Franses & Richard Paap, 2011. "Random‐coefficient periodic autoregressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 101-115, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00893-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.