IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1115-d741096.html
   My bibliography  Save this article

Dealing with Negative Inflows in the Long-Term Hydrothermal Scheduling Problem

Author

Listed:
  • Paulo Vitor Larroyd

    (Norus, Florianópolis 88036-003, Brazil)

  • Renata Pedrini

    (Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil)

  • Felipe Beltrán

    (Norus, Florianópolis 88036-003, Brazil)

  • Gabriel Teixeira

    (Norus, Florianópolis 88036-003, Brazil)

  • Erlon Cristian Finardi

    (Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
    INESC P&D Brazil, Santos 11055-300, Brazil)

  • Lucas Borges Picarelli

    (Norte Energia S.A., Brasilia 70390-025, Brazil)

Abstract

The long-term hydrothermal scheduling (LTHS) problem seeks to obtain an operational policy that optimizes water resource management. The most employed strategy to obtain such a policy is stochastic dual dynamic programming (SDDP). The primary source of uncertainty in predominant hydropower systems is the reservoirs inflow, usually a linear time series model (TSM) based on the order- p periodic autoregressive [PAR( p )] model. Although the linear PAR( p ) can represent the seasonality and autocorrelation of the inflow datasets, negative inflows may appear during SDDP iterations, leading to water balance infeasibilities in the LTHS problem. Different from other works, the focus of this paper is not avoiding negative inflows but instead dealing with the negative values that cause infeasibilities. Hence, three strategies are discussed: ( i ) inclusion of a slack variable penalized in the objective function, ( ii) negative inflow truncation to zero, and ( iii ) optimal inflow truncation, among which the latter is a novel approach. The strategies are compared individually and combined. Methodological conditions and evidence of the algorithm convergence are presented. Out-of-sample simulations show that the choice of negative inflow strategy significantly impacts the performance of the resultant operational policy. The combination of strategy ( i) and ( iii ) reduces the expected operation cost by 15%.

Suggested Citation

  • Paulo Vitor Larroyd & Renata Pedrini & Felipe Beltrán & Gabriel Teixeira & Erlon Cristian Finardi & Lucas Borges Picarelli, 2022. "Dealing with Negative Inflows in the Long-Term Hydrothermal Scheduling Problem," Energies, MDPI, vol. 15(3), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1115-:d:741096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    2. Mohammad Ebrahim Banihabib & Reihaneh Bandari & Richard C. Peralta, 2019. "Auto-Regressive Neural-Network Models for Long Lead-Time Forecasting of Daily Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 159-172, January.
    3. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    4. Konrad Bogner & Katharina Liechti & Luzi Bernhard & Samuel Monhart & Massimiliano Zappa, 2018. "Skill of Hydrological Extended Range Forecasts for Water Resources Management in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 969-984, February.
    5. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    6. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Anderson Passos de Aragão & Patrícia Teixeira Leite Asano & Ricardo de Andrade Lira Rabêlo, 2020. "A Reservoir Operation Policy Using Inter-Basin Water Transfer for Maximizing Hydroelectric Benefits in Brazil," Energies, MDPI, vol. 13(10), pages 1-26, May.
    8. Tejada-Arango, Diego A. & Wogrin, Sonja & Siddiqui, Afzal S. & Centeno, Efraim, 2019. "Opportunity cost including short-term energy storage in hydrothermal dispatch models using a linked representative periods approach," Energy, Elsevier, vol. 188(C).
    9. Faria, Victor. A.D. & de Queiroz, Anderson Rodrigo & Lima, Luana M.M. & Lima, José W.M., 2018. "Cooperative game theory and last addition method in the allocation of firm energy rights," Applied Energy, Elsevier, vol. 226(C), pages 905-915.
    10. Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
    11. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    12. de Queiroz, A.R. & Mulcahy, D. & Sankarasubramanian, A. & Deane, J.P. & Mahinthakumar, G. & Lu, N. & DeCarolis, J.F., 2019. "Repurposing an energy system optimization model for seasonal power generation planning," Energy, Elsevier, vol. 181(C), pages 1321-1330.
    13. Eshraghi, Hadi & Rodrigo de Queiroz, Anderson & Sankarasubramanian, A. & DeCarolis, Joseph F., 2021. "Quantification of climate-induced interannual variability in residential U.S. electricity demand," Energy, Elsevier, vol. 236(C).
    14. Xiaoyu Shi & Xuewen Lei & Qiang Huang & Shengzhi Huang & Kun Ren & Yuanyuan Hu, 2018. "Hourly Day-Ahead Wind Power Prediction Using the Hybrid Model of Variational Model Decomposition and Long Short-Term Memory," Energies, MDPI, vol. 11(11), pages 1-20, November.
    15. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    16. Duenas, Pablo & Ramos, Andres & Tapia-Ahumada, Karen & Olmos, Luis & Rivier, Michel & Pérez-Arriaga, Jose-Ignacio, 2018. "Security of supply in a carbon-free electric power system: The case of Iceland," Applied Energy, Elsevier, vol. 212(C), pages 443-454.
    17. Zhang, Yi & Cheng, Chuntian & Cao, Rui & Li, Gang & Shen, Jianjian & Wu, Xinyu, 2021. "Multivariate probabilistic forecasting and its performance’s impacts on long-term dispatch of hydro-wind hybrid systems," Applied Energy, Elsevier, vol. 283(C).
    18. Lima, L.M. Marangon & Popova, E. & Damien, P., 2014. "Modeling and forecasting of Brazilian reservoir inflows via dynamic linear models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 464-476.
    19. Vanderson Aparecido Delapedra-Silva & Paula Ferreira & Jorge Cunha & Herbert Kimura, 2021. "Economic Evaluation of Wind Power Projects in a Mix of Free and Regulated Market Environments in Brazil," Energies, MDPI, vol. 14(11), pages 1-18, June.
    20. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1115-:d:741096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.