IDEAS home Printed from https://ideas.repec.org/p/aah/create/2008-59.html
   My bibliography  Save this paper

Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood

Author

Listed:
  • Per Frederiksen
  • Frank S. Nielsen

    (School of Economics and Management, University of Aarhus, Denmark and CREATES)

Abstract

In this paper, we propose new tests for long memory in stationary and nonstationary time series possibly perturbed by short-run noise which may be serially correlated. The tests are all based on semiparametric estimators and exploit the self-similarity property of long memory processes. We o¤er simulation results that show good size properties of the tests, with power against spurious long memory. An empirical study of daily log-squared returns series of exchange rates and DJIA30 stocks shows that indeed there is long memory in exchange rate volatility and stock return volatility.

Suggested Citation

  • Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2008-59
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/08/rp08_59.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    2. Man, K.S. & Tiao, G.C., 2006. "Aggregation effect and forecasting temporal aggregates of long memory processes," International Journal of Forecasting, Elsevier, vol. 22(2), pages 267-281.
    3. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    4. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    5. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    6. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    7. Nielsen, Morten Ørregaard, 2004. "Efficient Likelihood Inference In Nonstationary Univariate Models," Econometric Theory, Cambridge University Press, vol. 20(1), pages 116-146, February.
    8. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    9. Soulier, Philippe, 2001. "Moment bounds and central limit theorem for functions of Gaussian vectors," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 193-203, September.
    10. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    11. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    12. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    13. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    14. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
    15. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
    16. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    17. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(1), pages 44-79, February.
    18. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    19. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
    20. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    21. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    22. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    23. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    24. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 445-470.
    25. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    26. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    27. Souza, Leonardo Rocha, 2003. "The aliasing effect, the Fejer Kernel and temporally aggregated long memory processes," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 470, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    28. Gil-Alana Luis A, 2003. "Fractional Integration with Bloomfield Disturbances in the Specification of Real Output in the G7 Countries," The B.E. Journal of Macroeconomics, De Gruyter, vol. 3(1), pages 1-15, September.
    29. Beran, Jan & Ocker, Dirk, 2000. "Temporal aggregation of stationary and nonstationary FARIMA (p, d, 0) models," CoFE Discussion Papers 00/22, University of Konstanz, Center of Finance and Econometrics (CoFE).
    30. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    31. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, September.
    32. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    33. Carlos Velasco, 2003. "Gaussian Semi‐parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, May.
    34. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    2. Corradi, Valentina & Swanson, Norman R., 2011. "Predictive density construction and accuracy testing with multiple possibly misspecified diffusion models," Journal of Econometrics, Elsevier, vol. 161(2), pages 304-324, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    3. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    4. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    5. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    6. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    7. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    8. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    9. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    10. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
    11. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    12. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    14. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    16. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    17. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    18. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    19. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.

    More about this item

    Keywords

    Temporal aggregation; semiparametric estimation; fractional integration; self-similarity; perturbed fractional processes.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2008-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.