IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v27y2006i2p211-251.html
   My bibliography  Save this article

Consistent estimation of the memory parameter for nonlinear time series

Author

Listed:
  • Violetta Dalla
  • Liudas Giraitis
  • Javier Hidalgo

Abstract

. For linear processes, semiparametric estimation of the memory parameter, based on the log‐periodogram and local Whittle estimators, has been exhaustively examined and their properties well established. However, except for some specific cases, little is known about the estimation of the memory parameter for nonlinear processes. The purpose of this paper is to provide the general conditions under which the local Whittle estimator of the memory parameter of a stationary process is consistent and to examine its rate of convergence. We show that these conditions are satisfied for linear processes and a wide class of nonlinear models, among others, signal plus noise processes, nonlinear transforms of a Gaussian process ξt and exponential generalized autoregressive, conditionally heteroscedastic (EGARCH) models. Special cases where the estimator satisfies the central limit theorem are discussed. The finite‐sample performance of the estimator is investigated in a small Monte Carlo study.

Suggested Citation

  • Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameter for nonlinear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
  • Handle: RePEc:bla:jtsera:v:27:y:2006:i:2:p:211-251
    DOI: 10.1111/j.1467-9892.2005.00464.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00464.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00464.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:27:y:2006:i:2:p:211-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.