IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i3p498-517.html
   My bibliography  Save this article

Expectation-based scan statistics for monitoring spatial time series data

Author

Listed:
  • Neill, Daniel B.

Abstract

We consider the simultaneous monitoring of a large number of spatially localized time series in order to detect emerging spatial patterns. For example, in disease surveillance, we detect emerging outbreaks by monitoring electronically available public health data, e.g. aggregate daily counts of Emergency Department visits. We propose a two-step approach based on the expectation-based scan statistic: we first compute the expected count for each recent day for each spatial location, then find spatial regions (groups of nearby locations) where the recent counts are significantly higher than expected. By aggregating information across multiple time series rather than monitoring each series separately, we can improve the timeliness, accuracy, and spatial resolution of detection. We evaluate several variants of the expectation-based scan statistic on the disease surveillance task (using synthetic outbreaks injected into real-world hospital Emergency Department data), and draw conclusions about which models and methods are most appropriate for which surveillance tasks.

Suggested Citation

  • Neill, Daniel B., 2009. "Expectation-based scan statistics for monitoring spatial time series data," International Journal of Forecasting, Elsevier, vol. 25(3), pages 498-517, July.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:498-517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00147-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gorr, Wilpen & Harries, Richard, 2003. "Introduction to crime forecasting," International Journal of Forecasting, Elsevier, vol. 19(4), pages 551-555.
    2. Corcoran, Jonathan J. & Wilson, Ian D. & Ware, J. Andrew, 2003. "Predicting the geo-temporal variations of crime and disorder," International Journal of Forecasting, Elsevier, vol. 19(4), pages 623-634.
    3. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    2. Fitzpatrick, Dylan & Ni, Yun & Neill, Daniel B., 2021. "Support vector subset scan for spatial pattern detection," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Shino Shiode & Narushige Shiode, 2022. "Network-Based Space-Time Scan Statistics for Detecting Micro-Scale Hotspots," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    4. Camilo Rivera & Guenther Walther, 2013. "Optimal detection of a jump in the intensity of a Poisson process or in a density with likelihood ratio statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 752-769, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    2. Sami Ullah & Hanita Daud & Sarat C. Dass & Hadi Fanaee-T & Husnul Kausarian & Alamgir, 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019," IJERPH, MDPI, vol. 17(4), pages 1-10, February.
    3. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    4. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
    5. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    6. Hadeel AlQadi & Majid Bani-Yaghoub & Sindhu Balakumar & Siqi Wu & Alex Francisco, 2021. "Assessment of Retrospective COVID-19 Spatial Clusters with Respect to Demographic Factors: Case Study of Kansas City, Missouri, United States," IJERPH, MDPI, vol. 18(21), pages 1-15, November.
    7. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    8. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    9. Jingnan Zhang & Yicheng Kang & Yang Yang & Peihua Qiu, 2015. "Statistical monitoring of the hand, foot and mouth disease in China," Biometrics, The International Biometric Society, vol. 71(3), pages 841-850, September.
    10. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    11. M. R. Martines & R. V. Ferreira & R. H. Toppa & L. M. Assunção & M. R. Desjardins & E. M. Delmelle, 2021. "Detecting space–time clusters of COVID-19 in Brazil: mortality, inequality, socioeconomic vulnerability, and the relative risk of the disease in Brazilian municipalities," Journal of Geographical Systems, Springer, vol. 23(1), pages 7-36, January.
    12. Sami Ullah & Hanita Daud & Sarat C Dass & Hadi Fanaee-T & Alamgir Khalil, 2018. "An Eigenspace approach for detecting multiple space-time disease clusters: Application to measles hotspots detection in Khyber-Pakhtunkhwa, Pakistan," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    13. Sevvandi Kandanaarachchi & Rob J Hyndman & Kate Smith-Miles, 2020. "Early classification of spatio-temporal events using partial information," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-39, August.
    14. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    15. Lele Deng & Yajun Han & Jinlong Wang & Haican Liu & Guilian Li & Dayan Wang & Guangxue He, 2023. "Epidemiological Characteristics of Notifiable Respiratory Infectious Diseases in Mainland China from 2010 to 2018," IJERPH, MDPI, vol. 20(5), pages 1-16, February.
    16. Suparna Das & Jenevieve Opoku & Adam Allston & Michael Kharfen, 2018. "Detecting spatial clusters of HIV and hepatitis coinfections," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-13, September.
    17. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    18. Schiöler, Linus, 2009. "Explorative analysis of spatial patterns of influenza incidences in Sweden 1999—2008," Research Reports 2008:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    19. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    20. William H. Woodall & J Brooke Marshall & Michael D. Joner Jr & Shannon E Fraker & Abdel‐Salam G Abdel‐Salam, 2008. "On the use and evaluation of prospective scan methods for health‐related surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 223-237, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:498-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.