IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v88y2019icp273-282.html
   My bibliography  Save this article

Ruin probabilities under capital constraints

Author

Listed:
  • Ramsden, Lewis
  • Papaioannou, Apostolos D.

Abstract

In this paper, we generalise the classic compound Poisson risk model, by the introduction of ordered capital levels, to model the solvency of an insurance firm. A breach of the higher capital level, the magnitude of which does not cause further breaches of either the lower level or the so-called intermediate confidence level (of the shareholders), requires a capital injection to restore the surplus to a solvent position. On the other hand, if the confidence level is breached capital injections are no longer a viable method of recapitalisation. Instead, the company can borrow money from a third party, subject to a constant interest rate, which is paid back until the surplus returns to the confidence level and subsequently can be restored to a fully solvent position by a capital injection. If at any point the surplus breaches the lower capital level, the company is considered ‘insolvent’ and is forced to cease trading. For the aforementioned risk model, we derive an explicit expression for the ‘probability of insolvency’ in terms of the ruin quantities of the classical risk model. Under the assumption of exponentially distributed claim sizes, we show that the probability of insolvency is in fact directly proportional to the classical ruin function. It is shown that this result also holds for the asymptotic behaviour of the insolvency probability, with a general claim size distribution. Explicit expressions are also derived for the moment generating function of the accumulated capital injections up to the time of insolvency and finally, in order to better capture the reality, dividend payments to the companies shareholders are considered, along with the capital constraint levels, and explicit expressions for the probability of insolvency, under this modification, are obtained.

Suggested Citation

  • Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
  • Handle: RePEc:eee:insuma:v:88:y:2019:i:c:p:273-282
    DOI: 10.1016/j.insmatheco.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717302731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gérard Pafumi, 1998. "“On the Time Value of Ruin”, Hans U. Gerber and Elias S.W. Shiu, January 1998," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 75-76.
    2. Willmot, Gordon E., 2002. "Compound geometric residual lifetime distributions and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 421-438, June.
    3. Chuancun Yin & Chunwei Wang, 2010. "The Perturbed Compound Poisson Risk Process with Investment and Debit Interest," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 391-413, September.
    4. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    5. Nie, Ciyu & Dickson, David C. M. & Li, Shuanming, 2011. "Minimizing the ruin probability through capital injections," Annals of Actuarial Science, Cambridge University Press, vol. 5(2), pages 195-209, September.
    6. Hans Gerber & Hailiang Yang, 2007. "Absolute Ruin Probabilities in a Jump Diffusion Risk Model with Investment," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 159-169.
    7. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    8. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    9. Dickson, David C. M. & Egidio dos Reis, Alfredo D., 1997. "The effect of interest on negative surplus," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 1-16, October.
    10. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2008. "On the time value of absolute ruin for a multi-layer compound Poisson model under interest force," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1835-1845, September.
    2. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2010. "An elementary approach to discrete models of dividend strategies," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 109-116, February.
    3. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "On the time to ruin for a dependent delayed capital injection risk model," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 119-135.
    4. Brill, Percy H. & Yu, Kaiqi, 2011. "Analysis of risk models using a level crossing technique," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 298-309.
    5. Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.
    6. Afonso, Lourdes B. & Cardoso, Rui M.R. & Egídio dos Reis, Alfredo D., 2013. "Dividend problems in the dual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 906-918.
    7. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    8. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    9. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    10. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    11. Chadjiconstantinidis, Stathis & Politis, Konstadinos, 2007. "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 41-52, July.
    12. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    13. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    14. Kim, Bara & Kim, Hwa-Sung & Kim, Jeongsim, 2008. "A risk model with paying dividends and random environment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 717-726, April.
    15. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    16. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    17. Frostig, Esther, 2010. "Asymptotic analysis of a risk process with high dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 21-26, August.
    18. Jun Cai & Hailiang Yang, 2014. "On the decomposition of the absolute ruin probability in a perturbed compound Poisson surplus process with debit interest," Annals of Operations Research, Springer, vol. 212(1), pages 61-77, January.
    19. Geng, Xianmin & Wang, Ying, 2012. "The compound Pascal model with dividends paid under random interest," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1331-1336.
    20. Feng, Runhuan, 2009. "On the total operating costs up to default in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 305-314, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:88:y:2019:i:c:p:273-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.