IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v11y2007i3p159-169.html
   My bibliography  Save this article

Absolute Ruin Probabilities in a Jump Diffusion Risk Model with Investment

Author

Listed:
  • Hans Gerber
  • Hailiang Yang

Abstract

This article considers the compound Poisson insurance risk model perturbed by diffusion with investment. We assume that the insurance company can invest its surplus in both a risky asset and the risk-free asset according to a fixed proportion. If the surplus is negative, a constant debit interest rate is applied. The absolute ruin probability function satisfies a certain integro-differential equation. In various special cases, closed-form solutions are obtained, and numerical illustrations are provided.

Suggested Citation

  • Hans Gerber & Hailiang Yang, 2007. "Absolute Ruin Probabilities in a Jump Diffusion Risk Model with Investment," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 159-169.
  • Handle: RePEc:taf:uaajxx:v:11:y:2007:i:3:p:159-169
    DOI: 10.1080/10920277.2007.10597474
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2007.10597474
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2007.10597474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Ferrari & Patrick Schuhmann & Shihao Zhu, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Papers 2111.03724, arXiv.org, revised Jun 2022.
    2. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2008. "On the time value of absolute ruin for a multi-layer compound Poisson model under interest force," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1835-1845, September.
    3. Jun Cai & Hailiang Yang, 2014. "On the decomposition of the absolute ruin probability in a perturbed compound Poisson surplus process with debit interest," Annals of Operations Research, Springer, vol. 212(1), pages 61-77, January.
    4. Yuen, Kam-Chuen & Zhou, Ming & Guo, Junyi, 2008. "On a risk model with debit interest and dividend payments," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2426-2432, October.
    5. Mitric, Ilie-Radu & Badescu, Andrei L. & Stanford, David A., 2012. "On the absolute ruin problem in a Sparre Andersen risk model with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 167-178.
    6. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    7. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    8. Li, Shuanming & Lu, Yi, 2013. "On the generalized Gerber–Shiu function for surplus processes with interest," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 127-134.
    9. Chuancun Yin & Chunwei Wang, 2010. "The Perturbed Compound Poisson Risk Process with Investment and Debit Interest," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 391-413, September.
    10. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    11. Bai, Xiaodong & Song, Lixin, 2012. "Asymptotic behavior of random time absolute ruin probability with D∩L tailed and conditionally independent claim sizes," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1718-1726.
    12. Wang, Chunwei & Yin, Chuancun & Li, Erqiang, 2010. "On the classical risk model with credit and debit interests under absolute ruin," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 427-436, March.
    13. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Center for Mathematical Economics Working Papers 657, Center for Mathematical Economics, Bielefeld University.
    14. Li, Manman & Liu, Zaiming, 2012. "Regulated absolute ruin problem with interest structure and linear dividend barrier," Economic Modelling, Elsevier, vol. 29(5), pages 1786-1792.
    15. Feng, Runhuan, 2011. "An operator-based approach to the analysis of ruin-related quantities in jump diffusion risk models," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 304-313, March.
    16. Liang, Zongxia & Long, Mingsi, 2015. "Minimization of absolute ruin probability under negative correlation assumption," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 247-258.
    17. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    18. Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.
    19. Luo, Shangzhen & Taksar, Michael, 2011. "On absolute ruin minimization under a diffusion approximation model," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 123-133, January.
    20. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:11:y:2007:i:3:p:159-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.