IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i1p127-134.html
   My bibliography  Save this article

A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model

Author

Listed:
  • Cheung, Eric C.K.
  • Landriault, David

Abstract

In this paper, a risk model where claims arrive according to a Markovian arrival process (MAP) is considered. A generalization of the well-known Gerber-Shiu function is proposed by incorporating the maximum surplus level before ruin into the penalty function. For this wider class of penalty functions, we show that the generalized Gerber-Shiu function can be expressed in terms of the original Gerber-Shiu function (see e.g. [Gerber, Hans U., Shiu, Elias, S.W., 1998. On the time value of ruin. North American Actuarial Journal 2(1), 48-72]) and the Laplace transform of a first passage time which are both readily available. The generalized Gerber-Shiu function is also shown to be closely related to the original Gerber-Shiu function in the same MAP risk model subject to a dividend barrier strategy. The simplest case of a MAP risk model, namely the classical compound Poisson risk model, will be studied in more detail. In particular, the discounted joint density of the surplus prior to ruin, the deficit at ruin and the maximum surplus before ruin is obtained through analytic Laplace transform inversion of a specific generalized Gerber-Shiu function. Numerical illustrations are then examined.

Suggested Citation

  • Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:127-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00085-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Ramaswami, 2006. "Passage Times in Fluid Models with Application to Risk Processes," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 497-515, December.
    2. Shuanming Li & Yi Lu, 2007. "Moments of the Dividend Payments and Related Problems in a Markov-Modulated Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 65-76.
    3. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    4. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    5. David Landriault & Gordon Willmot, 2009. "On the Joint Distributions of the Time to Ruin, the Surplus Prior to Ruin, and the Deficit at Ruin in the Classical Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 252-270.
    6. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    7. Yi Lu & Cary Tsai, 2007. "The Expected Discounted Penalty at Ruin for a Markov-Modulated Risk Process Perturbed by Diffusion," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 136-149.
    8. Li, Shuanming & Lu, Yi, 2008. "The Decompositions of the Discounted Penalty Functions and Dividends-Penalty Identity in a Markov-Modulated Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 53-71, May.
    9. Li, Shuanming & Dickson, David C.M., 2006. "The maximum surplus before ruin in an Erlang(n) risk process and related problems," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 529-539, June.
    10. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    11. Ahn, Soohan & Badescu, Andrei L., 2007. "On the analysis of the Gerber-Shiu discounted penalty function for risk processes with Markovian arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 234-249, September.
    12. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    13. Gerber, Hans U. & Lin, X. Sheldon & Yang, Hailiang, 2006. "A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 489-503, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kam Pui Wat & Kam Chuen Yuen & Wai Keung Li & Xueyuan Wu, 2018. "On the Compound Binomial Risk Model with Delayed Claims and Randomized Dividends," Risks, MDPI, vol. 6(1), pages 1-13, January.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    4. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    5. Zhimin Zhang & Eric C. K. Cheung, 2016. "The Markov Additive Risk Process Under an Erlangized Dividend Barrier Strategy," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 275-306, June.
    6. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    7. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    8. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    9. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.
    10. Cheung, Eric C.K. & Liu, Haibo & Willmot, Gordon E., 2018. "Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 358-377.
    11. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    12. Yonit Barron & David Perry & Wolfgang Stadje, 2016. "A make-to-stock production/inventory model with MAP arrivals and phase-type demands," Annals of Operations Research, Springer, vol. 241(1), pages 373-409, June.
    13. Eric C.K. Cheung & Haibo Liu & Jae-Kyung Woo, 2015. "On the Joint Analysis of the Total Discounted Payments to Policyholders and Shareholders: Dividend Barrier Strategy," Risks, MDPI, vol. 3(4), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    3. Chadjiconstantinidis, Stathis & Papaioannou, Apostolos D., 2009. "Analysis of the Gerber-Shiu function and dividend barrier problems for a risk process with two classes of claims," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 470-484, December.
    4. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    5. Li, Shuanming & Lu, Yi, 2009. "The distribution of total dividend payments in a Sparre Andersen model," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1246-1251, May.
    6. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    7. Tsai, Cary Chi-Liang & Sun, Li-juan, 2004. "On the discounted distribution functions for the Erlang(2) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 5-19, August.
    8. Lu, Yi & Li, Shuanming, 2009. "The Markovian regime-switching risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 296-303, April.
    9. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    10. Zhang, H.Y. & Zhou, M. & Guo, J.Y., 2006. "The Gerber-Shiu discounted penalty function for classical risk model with a two-step premium rate," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1211-1218, July.
    11. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    12. Willmot, Gordon E., 2004. "A note on a class of delayed renewal risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 251-257, April.
    13. Zhimin Zhang & Eric C. K. Cheung, 2016. "The Markov Additive Risk Process Under an Erlangized Dividend Barrier Strategy," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 275-306, June.
    14. Landriault, David, 2008. "Constant dividend barrier in a risk model with interclaim-dependent claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 31-38, February.
    15. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.
    16. Brill, Percy H. & Yu, Kaiqi, 2011. "Analysis of risk models using a level crossing technique," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 298-309.
    17. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    18. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    19. Tsai, Cary Chi-Liang, 2001. "On the discounted distribution functions of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 401-419, June.
    20. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:127-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.