IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v212y2014i1p61-7710.1007-s10479-011-1032-y.html
   My bibliography  Save this article

On the decomposition of the absolute ruin probability in a perturbed compound Poisson surplus process with debit interest

Author

Listed:
  • Jun Cai
  • Hailiang Yang

Abstract

We consider a compound Poisson surplus process perturbed by diffusion with debit interest. When the surplus is below zero or the company is on deficit, the company is allowed to borrow money at a debit interest rate to continue its business as long as its debt is at a reasonable level. When the surplus of a company is below a certain critical level, the company is no longer profitable, we say that absolute ruin occurs at this situation. In this risk model, absolute ruin may be caused by a claim or by oscillation. Thus, the absolute ruin probability in the model is decomposed as the sum of two absolute ruin probabilities, where one is the probability that absolute ruin is caused by a claim and the other is the probability that absolute ruin is caused by oscillation. In this paper, we first give the integro-differential equations satisfied by the absolute ruin probabilities and then derive the defective renewal equations for the absolute ruin probabilities. Using these defective renewal equations, we derive the asymptotical forms of the absolute ruin probabilities when the distributions of claim sizes are heavy-tailed and light-tailed. Finally, we derive explicit expressions for the absolute ruin probabilities when claim sizes are exponentially distributed. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Jun Cai & Hailiang Yang, 2014. "On the decomposition of the absolute ruin probability in a perturbed compound Poisson surplus process with debit interest," Annals of Operations Research, Springer, vol. 212(1), pages 61-77, January.
  • Handle: RePEc:spr:annopr:v:212:y:2014:i:1:p:61-77:10.1007/s10479-011-1032-y
    DOI: 10.1007/s10479-011-1032-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-1032-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-1032-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guojing, 2001. "A decomposition of the ruin probability for the risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 49-59, February.
    2. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2008. "On the time value of absolute ruin for a multi-layer compound Poisson model under interest force," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1835-1845, September.
    3. Hans Gerber & Hailiang Yang, 2007. "Absolute Ruin Probabilities in a Jump Diffusion Risk Model with Investment," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 159-169.
    4. Chuancun Yin & Chunwei Wang, 2010. "The Perturbed Compound Poisson Risk Process with Investment and Debit Interest," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 391-413, September.
    5. Veraverbeke, Noel, 1993. "Asymptotic estimates for the probability of ruin in a Poisson model with diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 13(1), pages 57-62, September.
    6. Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.
    7. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    8. Yuan, Haili & Hu, Yijun, 2008. "Absolute ruin in the compound Poisson risk model with constant dividend barrier," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2086-2094, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Akif Yazici & Nail Akar, 2017. "The finite/infinite horizon ruin problem with multi-threshold premiums: a Markov fluid queue approach," Annals of Operations Research, Springer, vol. 252(1), pages 85-99, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhaoyang & Xu, Wei & Zhang, Yan & Sun, Yingling, 2009. "On the ruin probability for the Cox correlated risk model perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 381-389, February.
    2. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    3. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    4. Tsai, Cary Chi-Liang, 2003. "On the expectations of the present values of the time of ruin perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 413-429, July.
    5. Honglong You & Yuan Gao, 2019. "Non-Parametric Threshold Estimation for the Wiener–Poisson Risk Model," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    6. Mitric, Ilie-Radu & Sendova, Kristina P. & Tsai, Cary Chi-Liang, 2010. "On a multi-threshold compound Poisson process perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 366-375, March.
    7. Kam C. Yuen & Yuhua Lu & Rong Wu, 2009. "The compound Poisson process perturbed by a diffusion with a threshold dividend strategy," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 73-93, January.
    8. Schlegel, Sabine, 1998. "Ruin probabilities in perturbed risk models," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 93-104, May.
    9. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    10. Yu, Wenguang, 2013. "Some results on absolute ruin in the perturbed insurance risk model with investment and debit interests," Economic Modelling, Elsevier, vol. 31(C), pages 625-634.
    11. Schmidli, Hanspeter, 2001. "Distribution of the first ladder height of a stationary risk process perturbed by [alpha]-stable Lévy motion," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 13-20, February.
    12. Mitric, Ilie-Radu & Badescu, Andrei L. & Stanford, David A., 2012. "On the absolute ruin problem in a Sparre Andersen risk model with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 167-178.
    13. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    14. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    15. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    16. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    17. Shimizu, Yasutaka, 2009. "A new aspect of a risk process and its statistical inference," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 70-77, February.
    18. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    19. Zhang, Chunsheng & Wang, Guojing, 2003. "The joint density function of three characteristics on jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 445-455, July.
    20. Wang, Guojing & Wu, Rong, 2000. "Some distributions for classical risk process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 15-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:212:y:2014:i:1:p:61-77:10.1007/s10479-011-1032-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.