IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i3p469-476.html
   My bibliography  Save this article

An extension of Paulsen–Gjessing’s risk model with stochastic return on investments

Author

Listed:
  • Yin, Chuancun
  • Wen, Yuzhen

Abstract

We consider in this paper a general two-sided jump-diffusion risk model that allows for risky investments as well as for correlation between the two Brownian motions driving insurance risk and investment return. We first introduce the model and then find the integro-differential equations satisfied by the Gerber–Shiu functions as well as the expected discounted penalty functions at ruin caused by a claim or by oscillation. We also study the dividend problem for the threshold and barrier strategies, the moments and moment-generating function of the total discounted dividends until ruin are discussed. Some examples are given for special cases.

Suggested Citation

  • Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:469-476
    DOI: 10.1016/j.insmatheco.2013.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kam-Chuen Yuen & Guojing Wang, 2005. "Some Ruin Problems for a Risk Process with Stochastic Interest," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 129-142.
    2. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    3. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    4. Ng, Andrew C.Y., 2009. "On a dual model with a dividend threshold," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 315-324, April.
    5. Jun Cai & Chengming Xu, 2006. "On The Decomposition Of The Ruin Probability For A Jump-Diffusion Surplus Process Compounded By A Geometric Brownian Motion," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 120-129.
    6. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    7. Jaschke, Stefan, 2003. "A note on the inhomogeneous linear stochastic differential equation," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 461-464, July.
    8. Paulsen, Jostein, 1998. "Sharp conditions for certain ruin in a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 135-148, June.
    9. Cai, Jun, 2004. "Ruin probabilities and penalty functions with stochastic rates of interest," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 53-78, July.
    10. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    11. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    12. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    13. Wan, Ning, 2007. "Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 509-523, May.
    14. Chuancun Yin & Chunwei Wang, 2010. "The Perturbed Compound Poisson Risk Process with Investment and Debit Interest," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 391-413, September.
    15. Hans Gerber & Elias Shiu, 2006. "On Optimal Dividend Strategies In The Compound Poisson Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 76-93.
    16. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    17. Paulsen, Jostein & Gjessing, Hakon K., 1997. "Optimal choice of dividend barriers for a risk process with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 215-223, October.
    18. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    19. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    20. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    2. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    3. Aleksandr Tarasyev & Ilya Krivenko & Maria Pecherkina & Tatiana Kashina, 2016. "Simulation of the Investment Attractiveness of Science in a Region," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(1), pages 303-314.
    4. Junxia Ma & Qiuling Fei & Fan Guo & Weili Xiong, 2019. "Variational Bayesian Iterative Estimation Algorithm for Linear Difference Equation Systems," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    5. Chuancun Yin & Kam Chuen Yuen, 2014. "Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs," Papers 1409.0407, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.
    2. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    3. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    4. Lu, Zhaoyang & Xu, Wei & Zhang, Yan & Sun, Yingling, 2009. "On the ruin probability for the Cox correlated risk model perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 381-389, February.
    5. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    6. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    7. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    8. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    9. Jing Wang & Zbigniew Palmowski & Corina Constantinescu, 2021. "How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability," Risks, MDPI, vol. 9(9), pages 1-17, August.
    10. Wei Wang, 2015. "The Perturbed Sparre Andersen Model with Interest and a Threshold Dividend Strategy," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 251-283, June.
    11. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    12. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    13. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    14. Runhuan Feng & Hans Volkmer & Shuaiqi Zhang & Chao Zhu, 2011. "Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model," Papers 1106.2781, arXiv.org, revised Nov 2014.
    15. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    16. Frostig, Esther, 2010. "Asymptotic analysis of a risk process with high dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 21-26, August.
    17. Liu, Zhang & Chen, Ping & Hu, Yijun, 2020. "On the dual risk model with diffusion under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    18. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    19. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    20. David Maher, 2005. "A Note on the Ruin Problem with Risky Investments," Papers math/0506127, arXiv.org, revised Jul 2005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:469-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.