IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v25y2009i3p247-262.html
   My bibliography  Save this article

Dividend payments in the classical risk model under absolute ruin with debit interest

Author

Listed:
  • Chunwei Wang
  • Chuancun Yin

Abstract

This paper attempts to study the dividend payments in a compound Poisson surplus process with debit interest. Dividends are paid to the shareholders according to a barrier strategy. An alternative assumption is that business can go on after ruin, as long as it is profitable. When the surplus is negative, a debit interest is applied. At first, we obtain the integro‐differential equations satisfied by the moment‐generating function and moments of the discounted dividend payments and we also prove the continuous property of them at zero. Then, applying these results, we get the explicit expressions of the moment‐generating function and moments of the discounted dividend payments for exponential claims. Furthermore, we discuss the optimal dividend barrier when the claim sizes have a common exponential distribution. Finally, we give the numerical examples for exponential claims and Erlang (2) claims. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.
  • Handle: RePEc:wly:apsmbi:v:25:y:2009:i:3:p:247-262
    DOI: 10.1002/asmb.722
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.722
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Cai & Hans Gerber & Hailiang Yang, 2006. "Optimal Dividends In An Ornstein-Uhlenbeck Type Model With Credit And Debit Interest," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 94-108.
    2. Cai, Jun & Dickson, David C. M., 2003. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 61-71, February.
    3. Zhang, Chunsheng & Wu, Rong, 1999. "On the distribution of the surplus of the D-E model prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 309-321, May.
    4. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    5. Gerber, Hans U. & Shiu, Elias S.W. & Smith, Nathaniel, 2008. "Methods for estimating the optimal dividend barrier and the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 243-254, February.
    6. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    7. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    8. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    9. Sundt, Bjorn & Teugels, Jozef L., 1997. "The adjustment function in ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 85-94, April.
    10. Hans Gerber & Hailiang Yang, 2007. "Absolute Ruin Probabilities in a Jump Diffusion Risk Model with Investment," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 159-169.
    11. Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately after ruin under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 247-255, October.
    12. Hans Gerber & Elias Shiu, 2006. "On Optimal Dividend Strategies In The Compound Poisson Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 76-93.
    13. Dickson, David C. M. & Egidio dos Reis, Alfredo D., 1997. "The effect of interest on negative surplus," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 1-16, October.
    14. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Cai & Hailiang Yang, 2014. "On the decomposition of the absolute ruin probability in a perturbed compound Poisson surplus process with debit interest," Annals of Operations Research, Springer, vol. 212(1), pages 61-77, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuen, Kam-Chuen & Zhou, Ming & Guo, Junyi, 2008. "On a risk model with debit interest and dividend payments," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2426-2432, October.
    2. Li, Shuanming & Lu, Yi, 2013. "On the generalized Gerber–Shiu function for surplus processes with interest," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 127-134.
    3. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    4. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    5. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    6. Yuan, Haili & Hu, Yijun, 2008. "Absolute ruin in the compound Poisson risk model with constant dividend barrier," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2086-2094, October.
    7. Yang, Wenquan & Hu, Yijun, 2009. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen risk model with interest and a nonlinear dividend barrier," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 63-69, January.
    8. Chuancun Yin & Chunwei Wang, 2010. "The Perturbed Compound Poisson Risk Process with Investment and Debit Interest," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 391-413, September.
    9. Wei Wang, 2015. "The Perturbed Sparre Andersen Model with Interest and a Threshold Dividend Strategy," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 251-283, June.
    10. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    11. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    12. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.
    13. Liu, Xiangdong & Xiong, Jie & Zhang, Shuaiqi, 2015. "The Gerber–Shiu discounted penalty function in the classical risk model with impulsive dividend policy," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 183-190.
    14. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    15. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    16. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    17. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    18. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2008. "On the time value of absolute ruin for a multi-layer compound Poisson model under interest force," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1835-1845, September.
    19. Jun Cai & Runhuan Feng & Gordon E. Willmot, 2009. "The Compound Poisson Surplus Model with Interest and Liquid Reserves: Analysis of the Gerber–Shiu Discounted Penalty Function," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 401-423, September.
    20. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:25:y:2009:i:3:p:247-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.