IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v50y2012i1p99-108.html
   My bibliography  Save this article

Extreme value behavior of aggregate dependent risks

Author

Listed:
  • Chen, Die
  • Mao, Tiantian
  • Pan, Xiaoqing
  • Hu, Taizhong

Abstract

Consider a portfolio of n identically distributed risks with dependence structure modeled by an Archimedean survival copula. Wüthrich (2003) and Alink et al. (2004) proved that the probability of a large aggregate loss scales like the probability of a large individual loss, times a proportionality factor. This factor depends on the dependence strength and the tail behavior of the individual risk, denoted by qnF, qnW and qnG according to whether the tail behavior belongs to the maximum domain of attraction of the Fréchet, the Weibull or the Gumbel distribution, respectively. We investigate properties of the factors qnW and qnG with respect to the dependence parameter and/or the tail behavior parameter, and revisit the asymptotic behavior of conditional tail expectations of aggregate risks for the Weibull and the Gumbel cases by using a different method. The main results strengthen and complement some results in Alink et al. (2004, 2005)Barbe et al. (2006), and Embrechts et al. (2009).

Suggested Citation

  • Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.
  • Handle: RePEc:eee:insuma:v:50:y:2012:i:1:p:99-108
    DOI: 10.1016/j.insmatheco.2011.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871100117X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alink, Stan & Löwe, Matthias & Wüthrich, Mario V., 2005. "Analysis of the Expected Shortfall of Aggregate Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 25-43, May.
    2. Alink, Stan & Lowe, Matthias & V. Wuthrich, Mario, 2004. "Diversification of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 77-95, August.
    3. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    4. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    5. Barbe, Philippe & Fougères, Anne-Laure & Genest, Christian, 2006. "On the Tail Behavior of Sums of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 361-373, November.
    6. Stan Alink & Matthias Löwe & Mario V. Wüthrich, 2007. "Diversification for general copula dependence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 446-465, November.
    7. Shaked, Moshe & Shanthikumar, J. George, 1997. "Supermodular Stochastic Orders and Positive Dependence of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 86-101, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    2. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    3. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
    4. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“Beyond Value-at-Risk: GlueVaR Distortion Risk Measures”," IREA Working Papers 201302, University of Barcelona, Research Institute of Applied Economics, revised Feb 2013.
    5. Pan, Xiaoqing & Leng, Xuan & Hu, Taizhong, 2013. "The second-order version of Karamata’s theorem with applications," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1397-1403.
    6. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    8. Jonathan El Methni & Laurent Gardes & Stéphane Girard, 2014. "Non-parametric Estimation of Extreme Risk Measures from Conditional Heavy-tailed Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 988-1012, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    2. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    3. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    4. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    5. Coqueret, Guillaume, 2014. "Second order risk aggregation with the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 150-158.
    6. Biard, Romain & Lefèvre, Claude & Loisel, Stéphane, 2008. "Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 412-421, December.
    7. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    8. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    9. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    10. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    11. Georg Mainik & Ludger Ruschendorf, 2010. "Ordering of multivariate probability distributions with respect to extreme portfolio losses," Papers 1010.5171, arXiv.org.
    12. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    13. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    14. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    15. Michel Denuit & Esther Frostig & Benny Levikson, 2007. "Supermodular Comparison of Time-to-Ruin Random Vectors," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 41-54, March.
    16. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    17. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    18. Romain Biard & Claude Lefèvre & Stéphane Loisel, 2008. "Impact of correlation crises in risk theory," Post-Print hal-00308782, HAL.
    19. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    20. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.

    More about this item

    Keywords

    Archimedean copula; Conditional tail expectation; Extreme value distribution; Maximum domain of attraction; Regular variation; The supermodular order; Value-at-Risk;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:1:p:99-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.