IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v9y2007i1d10.1007_s11009-006-9004-4.html
   My bibliography  Save this article

Supermodular Comparison of Time-to-Ruin Random Vectors

Author

Listed:
  • Michel Denuit

    (Université Catholique de Louvain)

  • Esther Frostig

    (University of Haifa)

  • Benny Levikson

    (University of Haifa)

Abstract

This paper studies time-to-ruin random vectors for multivariate risk processes. Two cases are considered: risk processes with independent increments and risk processes evolving in a common random environment (e.g., because they share the same economic conditions). As expected, increasing the dependence between the risk processes increases the dependence between their respective time-to-ruin random variables.

Suggested Citation

  • Michel Denuit & Esther Frostig & Benny Levikson, 2007. "Supermodular Comparison of Time-to-Ruin Random Vectors," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 41-54, March.
  • Handle: RePEc:spr:metcap:v:9:y:2007:i:1:d:10.1007_s11009-006-9004-4
    DOI: 10.1007/s11009-006-9004-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-006-9004-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-006-9004-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshe Shaked & Fabio Spizzichino, 1998. "Positive Dependence Properties of Conditionally Independent Random Lifetimes," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 944-959, November.
    2. Philippe Picard & Claude Lefèvre & Ibrahim Coulibaly, 2003. "Multirisks Model and Finite-Time Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 5(3), pages 337-353, September.
    3. Li, Haijun & Xu, Susan H., 2001. "Stochastic Bounds and Dependence Properties of Survival Times in a Multicomponent Shock Model," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 63-89, January.
    4. Susan H. Xu, 1999. "Structural Analysis of a Queueing System with Multiclasses of Correlated Arrivals and Blocking," Operations Research, INFORMS, vol. 47(2), pages 264-276, April.
    5. Christofides, Tasos C. & Vaggelatou, Eutichia, 2004. "A connection between supermodular ordering and positive/negative association," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 138-151, January.
    6. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    7. Dhaene, J. & Goovaerts, M. J., 1997. "On the dependency of risks in the individual life model," Insurance: Mathematics and Economics, Elsevier, vol. 19(3), pages 243-253, May.
    8. Susan H. Xu & Haijun Li, 2000. "Majorization of Weighted Trees: A New Tool to Study Correlated Stochastic Systems," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 298-323, May.
    9. Belzunce, Felix & Ortega, Eva-Maria & Pellerey, Franco & Ruiz, Jose M., 2006. "Variability of total claim amounts under dependence between claims severity and number of events," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 460-468, June.
    10. Shaked, Moshe & Shanthikumar, J. George, 1997. "Supermodular Stochastic Orders and Positive Dependence of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 86-101, April.
    11. Frostig, Esther, 2003. "Ordering ruin probabilities for dependent claim streams," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 93-114, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    2. Nicole Bäuerle & Anja Blatter & Alfred Müller, 2008. "Dependence properties and comparison results for Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(1), pages 161-186, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Taizhong & Xie, Chaode & Ruan, Lingyan, 2005. "Dependence structures of multivariate Bernoulli random vectors," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 172-195, May.
    2. Kulik, Rafal & Szekli, Ryszard, 2005. "Dependence orderings for some functionals of multivariate point processes," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 145-173, January.
    3. Frostig, Esther, 2003. "Ordering ruin probabilities for dependent claim streams," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 93-114, February.
    4. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    5. Masih-Tehrani, Behdad & Xu, Susan H. & Kumara, Soundar & Li, Haijun, 2011. "A single-period analysis of a two-echelon inventory system with dependent supply uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1128-1151, September.
    6. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    7. Chuancun Yin, 2019. "Stochastic Orderings of Multivariate Elliptical Distributions," Papers 1910.07158, arXiv.org, revised Nov 2019.
    8. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    9. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    10. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    11. Wenhui Zhou & Xiuli Chao, 2012. "Stein–Chen approximation and error bounds for order fill rates in assemble‐to‐order systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(8), pages 643-655, December.
    12. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    13. Meyer, Margaret & Strulovici, Bruno, 2012. "Increasing interdependence of multivariate distributions," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1460-1489.
    14. Awaya, Yu & Do, Jihwan, 2022. "Incentives under equal-pay constraint and subjective peer evaluation," Games and Economic Behavior, Elsevier, vol. 135(C), pages 41-59.
    15. Christofides, Tasos C. & Vaggelatou, Eutichia, 2004. "A connection between supermodular ordering and positive/negative association," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 138-151, January.
    16. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    17. Cousin, Areski & Laurent, Jean-Paul, 2008. "Comparison results for exchangeable credit risk portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1118-1127, June.
    18. Denuit, Michel & Lefevre, Claude & Mesfioui, M'hamed, 1999. "A class of bivariate stochastic orderings, with applications in actuarial sciences," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 31-50, March.
    19. Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.
    20. Hu, Taizhong & Wu, Zhiqiang, 1999. "On dependence of risks and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 323-332, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:9:y:2007:i:1:d:10.1007_s11009-006-9004-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.