IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v61y2007i4p446-465.html
   My bibliography  Save this article

Diversification for general copula dependence

Author

Listed:
  • Stan Alink
  • Matthias Löwe
  • Mario V. Wüthrich

Abstract

We generalize the extreme value analysis for Archimedean copulas (see Alink, Löwe and Wüthrich, 2003) to the non‐Archimedean case: Assume we have d≥2 exchangeable and continuously distributed risks X1,…,Xd. Under appropriate assumptions there is a constant qd such that, for all large u, we have . The constant qd describes the asymptotic dependence structure. Typically, qd will depend on more aspects of this dependence structure than the well‐known tail dependence coefficient.

Suggested Citation

  • Stan Alink & Matthias Löwe & Mario V. Wüthrich, 2007. "Diversification for general copula dependence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 446-465, November.
  • Handle: RePEc:bla:stanee:v:61:y:2007:i:4:p:446-465
    DOI: 10.1111/j.1467-9574.2007.00370.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.2007.00370.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.2007.00370.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    2. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    3. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    4. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    5. Dhaene, Jan & Denuit, Michel & Vanduffel, Steven, 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 325-332, December.
    6. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    7. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    8. Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:61:y:2007:i:4:p:446-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.