IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.5171.html
   My bibliography  Save this paper

Ordering of multivariate probability distributions with respect to extreme portfolio losses

Author

Listed:
  • Georg Mainik
  • Ludger Ruschendorf

Abstract

A new notion of stochastic ordering is introduced to compare multivariate stochastic risk models with respect to extreme portfolio losses. In the framework of multivariate regular variation comparison criteria are derived in terms of ordering conditions on the spectral measures, which allows for analytical or numerical verification in practical applications. Additional comparison criteria in terms of further stochastic orderings are derived. The application examples include worst case and best case scenarios, elliptically contoured distributions, and multivariate regularly varying models with Gumbel, Archimedean, and Galambos copulas.

Suggested Citation

  • Georg Mainik & Ludger Ruschendorf, 2010. "Ordering of multivariate probability distributions with respect to extreme portfolio losses," Papers 1010.5171, arXiv.org.
  • Handle: RePEc:arx:papers:1010.5171
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.5171
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alink, Stan & Lowe, Matthias & V. Wuthrich, Mario, 2004. "Diversification of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 77-95, August.
    2. Georg Mainik & Ludger Rüschendorf, 2010. "On optimal portfolio diversification with respect to extreme risks," Finance and Stochastics, Springer, vol. 14(4), pages 593-623, December.
    3. Alink, Stan & Löwe, Matthias & Wüthrich, Mario V., 2005. "Analysis of the Expected Shortfall of Aggregate Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 25-43, May.
    4. Shaked, Moshe & Shanthikumar, J. George, 1997. "Supermodular Stochastic Orders and Positive Dependence of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 86-101, April.
    5. Wei, Gang & Hu, Taizhong, 2002. "Supermodular dependence ordering on a class of multivariate copulas," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 375-385, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    2. Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.
    3. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    4. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    5. Fan Yang & Yi Zhang, 2024. "Asymptotics of Sum of Heavy-tailed Risks with Copulas," Papers 2411.09657, arXiv.org.
    6. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    7. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    8. Genest, Christian & Marceau, Etienne & Mesfioui, Mhamed, 2003. "Compound Poisson approximations for individual models with dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 73-91, February.
    9. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    10. Biard, Romain & Lefèvre, Claude & Loisel, Stéphane, 2008. "Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 412-421, December.
    11. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    12. Cousin, Areski & Laurent, Jean-Paul, 2008. "Comparison results for exchangeable credit risk portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1118-1127, June.
    13. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    14. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    15. Savas Dayanik & Jing-Sheng Song & Susan H. Xu, 2003. "The Effectiveness of Several Performance Bounds for Capacitated Production, Partial-Order-Service, Assemble-to-Order Systems," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 230-251, December.
    16. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    17. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    18. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    19. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    20. Yang, Jingping & Cheng, Shihong & Zhang, Lihong, 2006. "Bivariate copula decomposition in terms of comonotonicity, countermonotonicity and independence," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 267-284, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.5171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.