Distorted Lorenz curves: models and comparisons
Author
Abstract
Suggested Citation
DOI: 10.1007/s00355-013-0754-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Villasenor, JoseA. & Arnold, Barry C., 1989. "Elliptical Lorenz curves," Journal of Econometrics, Elsevier, vol. 40(2), pages 327-338, February.
- Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004.
"Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model,"
Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
- Alain Chateauneuf & Michèle Cohen & Isaac Meilijson, 2004. "Four notions of mean preserving increase in risk, risk attitudes and applications to the Rank-Dependent Expected Utility model," Post-Print halshs-00212281, HAL.
- Alain Chateauneuf & Michèle Cohen & Isaac Meilijson, 2004. "Four notions of mean preserving increase in risk, risk attitudes and applications to the Rank-Dependent Expected Utility model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00212281, HAL.
- Navarro, Jorge & Rychlik, Tomasz, 2010. "Comparisons and bounds for expected lifetimes of reliability systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 309-317, November.
- Miguel Sordo & Héctor Ramos, 2007. "Characterization of stochastic orders by L-functionals," Statistical Papers, Springer, vol. 48(2), pages 249-263, April.
- Rothschild, Michael & Stiglitz, Joseph E., 1973.
"Some further results on the measurement of inequality,"
Journal of Economic Theory, Elsevier, vol. 6(2), pages 188-204, April.
- Michael Rothschild & Joseph E. Stiglitz, 1972. "Some Further Results on the Measurement of Inequality," Cowles Foundation Discussion Papers 344, Cowles Foundation for Research in Economics, Yale University.
- Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
- Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
- Rolf Aaberge, 2009.
"Ranking intersecting Lorenz curves,"
Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
- Rolf Aaberge, 2000. "Ranking intersectiong Lorenz Curves," ICER Working Papers 08-2000, ICER - International Centre for Economic Research.
- Rolf Aaberge, 2004. "Ranking Intersecting Lorenz Curves," CEIS Research Paper 45, Tor Vergata University, CEIS.
- Rolf Aaberge, 2000. "Ranking Intersecting Lorenz Curves," Discussion Papers 271, Statistics Norway, Research Department.
- Aaberge, Rolf, 2008. "Ranking Intersecting Lorenz Curves," IZA Discussion Papers 3852, Institute of Labor Economics (IZA).
- Claudio Zoli, 1999. "Intersecting generalized Lorenz curves and the Gini index," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 183-196.
- Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
- repec:bla:revinw:v:37:y:1991:i:4:p:447-52 is not listed on IDEAS
- Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
- Ogwang, Tomson & Gouranga Rao, U. L., 1996. "A new functional form for approximating the Lorenz curve," Economics Letters, Elsevier, vol. 52(1), pages 21-29, July.
- Gupta, Manash Ranjan, 1984. "Functional Form for Estimating the Lorenz Curve," Econometrica, Econometric Society, vol. 52(5), pages 1313-1314, September.
- Zuxiang Wang & Yew‐Kwang Ng & Russell Smyth, 2011.
"A General Method For Creating Lorenz Curves,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 57(3), pages 561-582, September.
- ZuXiang Wang & Russell Smyth & Yew-Kwang Ng, 2009. "A General Method to Create Lorenz Models," Monash Economics Working Papers 06-09, Monash University, Department of Economics.
- Rasche, R H, et al, 1980. "Functional Forms for Estimating the Lorenz Curve: Comment," Econometrica, Econometric Society, vol. 48(4), pages 1061-1062, May.
- Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
- Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
- Kakwani, Nanak, 1980. "On a Class of Poverty Measures," Econometrica, Econometric Society, vol. 48(2), pages 437-446, March.
- WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
- Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
- Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
- Ramos, Héctor M. & Sordo, Miguel A., 2003. "Dispersion measures and dispersive orderings," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 123-131, January.
- Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2011. "Stochastic comparisons of distorted variability measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 11-17, July.
- Yitzhaki, Shlomo, 1983. "On an Extension of the Gini Inequality Index," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 617-628, October.
- P. Ortega & G. Martín & A. Fernández & M. Ladoux & A. García, 1991. "A New Functional Form For Estimating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 37(4), pages 447-452, December.
- Helene, Otaviano, 2010. "Fitting Lorenz curves," Economics Letters, Elsevier, vol. 108(2), pages 153-155, August.
- Jose-Mari Sarabia, 1997. "A hierarchy of lorenz curves based on the generalized tukey's lambda distribution," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 305-320.
- Muliere, Pietro & Scarsini, Marco, 1989.
"A note on stochastic dominance and inequality measures,"
Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
- Marco Scarsini & Pietro Muliere, 1989. "A note on stochastic dominance and inequality measures," Post-Print hal-00542231, HAL.
- Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
- José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 748-756, January.
- Holm, Juhani, 1993. "Maximum entropy Lorenz curves," Journal of Econometrics, Elsevier, vol. 59(3), pages 377-389, October.
- Basmann, R. L. & Hayes, K. J. & Slottje, D. J. & Johnson, J. D., 1990. "A general functional form for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 77-90.
- Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
- Arnold, Barry C, et al, 1987. "Generating Ordered Families of Lorenz Curves by Strongly Unimodal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 305-308, April.
- Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
- Rolf Aaberge, 2000. "Characterizations of Lorenz curves and income distributions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(4), pages 639-653.
- Rolf Aaberge, 2000. "Axiomatic characterization of the Gini coefficient and Lorenz," ICER Working Papers 06-2000, ICER - International Centre for Economic Research.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- John Ogwang & Dennis Obote & Ursula Abwot, 2021. "A Technical Note on New Applications of Lorenz Curves in Business Based on Pareto Principles," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 9(2), pages 76-81.
- Gómez-Déniz, Emilio & Dorta-González, Pablo, 2024. "Modeling citation concentration through a mixture of Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 18(2).
- Satya Paul & Sriram Shankar, 2020.
"An alternative single parameter functional form for Lorenz curve,"
Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
- Satya Paul & Sriram Shankar, 2017. "An alternative single parameter functional form for Lorenz curve," Crawford School Research Papers 1712, Crawford School of Public Policy, The Australian National University.
- Chen Li & Xiaohu Li, 2018. "Preservation of increasing convex/concave order under the formation of parallel/series system of dependent components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(4), pages 445-464, May.
- Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
- Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
- WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
- Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
- ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
- Satya Paul & Sriram Shankar, 2020.
"An alternative single parameter functional form for Lorenz curve,"
Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
- Satya Paul & Sriram Shankar, 2017. "An alternative single parameter functional form for Lorenz curve," Crawford School Research Papers 1712, Crawford School of Public Policy, The Australian National University.
- Sarabia, José María & Castillo, Enrique & Pascual, Marta & Sarabia, María, 2005. "Mixture Lorenz curves," Economics Letters, Elsevier, vol. 89(1), pages 89-94, October.
- Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
- Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
- Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
- Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Economics Working Paper Archive (University of Rennes & University of Caen) 2019-09, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
- Claudio Zoli, 2002.
"Inverse stochastic dominance, inequality measurement and Gini indices,"
Journal of Economics, Springer, vol. 77(1), pages 119-161, December.
- Claudio Zoli, 2002. "Inverse stochastic dominance, inequality measurement and Gini indices," Journal of Economics, Springer, vol. 9(1), pages 119-161, December.
- Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
- Fabio Maccheroni & Pietro Muliere & Claudio Zoli, 2005. "Inverse stochastic orders and generalized Gini functionals," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 529-559.
- Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
- Rolf Aaberge, 2003. "Mean-Spread-Preserving Transformations," Discussion Papers 360, Statistics Norway, Research Department.
- Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
- Louis Mesnard, 2022.
"About some difficulties with the functional forms of Lorenz curves,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 939-950, December.
- Louis de Mesnard, 2022. "About some difficulties with the functional forms of Lorenz curves," Post-Print hal-03806134, HAL.
- Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
- Rolf Aaberge & Magne Mogstad, 2011.
"Robust inequality comparisons,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(3), pages 353-371, September.
- Aaberge, Rolf & Mogstad, Magne, 2010. "Robust Inequality Comparisons," IZA Discussion Papers 4769, Institute of Labor Economics (IZA).
- Rolf Aaberge & Magne Mogstad, 2010. "Robust Inequality Comparisons," Discussion Papers 623, Statistics Norway, Research Department.
- Rolf Aaberge & Magne Mogstad, 2010. "Robust inequality comparisons," Working Papers 163, ECINEQ, Society for the Study of Economic Inequality.
- Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:42:y:2014:i:4:p:761-780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.