IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v28y2001i1p69-82.html
   My bibliography  Save this article

A class of non-expected utility risk measures and implications for asset allocations

Author

Listed:
  • van der Hoek, John
  • Sherris, Michael

Abstract

No abstract is available for this item.

Suggested Citation

  • van der Hoek, John & Sherris, Michael, 2001. "A class of non-expected utility risk measures and implications for asset allocations," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 69-82, February.
  • Handle: RePEc:eee:insuma:v:28:y:2001:i:1:p:69-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(00)00067-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    3. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Machina, Mark J, 1987. "Choice under Uncertainty: Problems Solved and Unsolved," Journal of Economic Perspectives, American Economic Association, vol. 1(1), pages 121-154, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    2. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "An alternative class of distortion operators alternative tools to generate asymmetrical multimodal distributions," Documents de travail du Centre d'Economie de la Sorbonne 17030, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    4. Albrecht, Peter, 2003. "Risk measures," Papers 03-01, Sonderforschungsbreich 504.
    5. Schmidt, Ulrich & Zank, Horst, 2009. "A simple model of cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 45(3-4), pages 308-319, March.
    6. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "An alternative class of distortion operators," Post-Print halshs-01543251, HAL.
    7. Kaluszka, Marek & Krzeszowiec, Michał, 2013. "On iterative premium calculation principles under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 435-440.
    8. de Jong, Frank, 2008. "Pension fund investments and the valuation of liabilities under conditional indexation," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 1-13, February.
    9. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
    10. Massimiliano Barbi & Silvia Romagnoli, 2016. "Optimal hedge ratio under a subjective re-weighting of the original measure," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1271-1280, March.
    11. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    12. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "An alternative class of distortion operators," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01543251, HAL.
    13. Muermann, Alexander & Mitchell, Olivia S. & Volkman, Jacqueline M., 2006. "Regret, portfolio choice, and guarantees in defined contribution schemes," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 219-229, October.
    14. Marek Kałuszka & Michał Krzeszowiec, 2013. "Iteracyjność składek ubezpieczeniowych w ujęciu teorii skumulowanej perspektywy i teorii nieokreśloności," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 45-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    2. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    4. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    5. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    6. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    7. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    8. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
    9. Peng, Liang & Qi, Yongcheng & Wang, Ruodu & Yang, Jingping, 2012. "Jackknife empirical likelihood method for some risk measures and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 142-150.
    10. Rania HENTATI & Jean-Luc PRIGENT, 2010. "Structured Portfolio Analysis under SharpeOmega Ratio," EcoMod2010 259600073, EcoMod.
    11. Border, Kim C. & Segal, Uzi, 1997. "Coherent Odds and Subjective Probability," University of Western Ontario, Departmental Research Report Series 9717, University of Western Ontario, Department of Economics.
    12. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    13. Kam Yu, 2009. "Measuring the Output and Prices of the Lottery Sector: An Application of Implicit Expected Utility Theory," NBER Chapters, in: Price Index Concepts and Measurement, pages 405-425, National Bureau of Economic Research, Inc.
    14. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    15. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    16. Haim Levy, 2008. "First Degree Stochastic Dominance Violations: Decision Weights and Bounded Rationality," Economic Journal, Royal Economic Society, vol. 118(528), pages 759-774, April.
    17. Levy, Haim & Levy, Moshe, 2002. "Experimental test of the prospect theory value function: A stochastic dominance approach," Organizational Behavior and Human Decision Processes, Elsevier, vol. 89(2), pages 1058-1081, November.
    18. Arthur Charpentier & Abder Oulidi, 2009. "Estimating allocations for Value-at-Risk portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 395-410, July.
    19. Hui Huang & Shunming Zhang, 2011. "The Distorted Theory of Rank-Dependent Expected Utility," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 233-263, November.
    20. Marc Willinger, 1990. "La rénovation des fondements de l'utilité et du risque," Revue Économique, Programme National Persée, vol. 41(1), pages 5-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:28:y:2001:i:1:p:69-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.