IDEAS home Printed from https://ideas.repec.org/a/sgh/annals/i31y2013p45-56.html
   My bibliography  Save this article

Iteracyjność składek ubezpieczeniowych w ujęciu teorii skumulowanej perspektywy i teorii nieokreśloności

Author

Listed:
  • Marek Kałuszka

    (Politechnika Łódzka)

  • Michał Krzeszowiec

    (Politechnika Łódzka, Polska Akademia Nauk)

Abstract

Jedną z najważniejszych z praktycznego punktu widzenia własności składek ubezpieczeniowych jest iteracyjność. Pojęcie iteracyjności zostało wprowadzone w latach 70. ubiegłego stulecia i od tej pory wielu matematyków i ekonomistów badało tę własność dla różnych funkcjonałów zdefiniowanych w matematyce finansowej i ubezpieczeniowej. W niniejszej pracy omawiamy iteracyjność składek zerowej użyteczności oraz mean-value zdefiniowanych w ujęciu dwóch różnych teorii ekonomicznych. Pierwsza z nich, teoria skumulowanej perspektywy Kahnemana-Tversky’ego, zakłada, że przy podejmowaniu decyzji w warunkach ryzyka i niepewności ludzie zniekształcają prawdopodobieństwa zysków i strat oraz używają funkcji wartości do oceny wielkości zmian w posiadanym majątku. W drugim z modeli, uwzględniającym założenia teorii nieokreśloności, przyjmujemy, że nie mamy całkowitej wiedzy na temat rozkładu szkody. Przeprowadzona w tym artykule analiza pozwoli nam wzbogacić informacje, jakie posiadamy na temat iteracyjności składek ubezpieczeniowych zdefiniowanych w teorii skumulowanej perspektywy i teorii nieokreśloności.

Suggested Citation

  • Marek Kałuszka & Michał Krzeszowiec, 2013. "Iteracyjność składek ubezpieczeniowych w ujęciu teorii skumulowanej perspektywy i teorii nieokreśloności," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 45-56.
  • Handle: RePEc:sgh:annals:i:31:y:2013:p:45-56
    as

    Download full text from publisher

    File URL: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z31_03.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goovaerts, M. J. & Vylder, F. De, 1979. "A Note on Iterative Premium Calculation Principles," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 325-329, December.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Ludwig, Alexander & Zimper, Alexander, 2006. "Investment behavior under ambiguity: The case of pessimistic decision makers," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 111-130, September.
    4. Heilpern, S., 2003. "A rank-dependent generalization of zero utility principle," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 67-73, August.
    5. Anwar, Sajid & Zheng, Mingli, 2012. "Competitive insurance market in the presence of ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 79-84.
    6. van der Hoek, John & Sherris, Michael, 2001. "A class of non-expected utility risk measures and implications for asset allocations," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 69-82, February.
    7. Marek Kaluszka & Andrzej Okolewski, 2008. "An Extension of Arrow's Result on Optimal Reinsurance Contract," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 275-288, June.
    8. Kaluszka, Marek & Krzeszowiec, Michał, 2013. "An Iterativity Condition For The Mean-Value Principle Under Cumulative Prospect Theory," ASTIN Bulletin, Cambridge University Press, vol. 43(1), pages 61-71, January.
    9. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Mean-Value Principle under Cumulative Prospect Theory," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 103-122, May.
    10. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
    11. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "A note on additive risk measures in rank-dependent utility," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 187-189, October.
    12. Kaluszka, Marek & Krzeszowiec, Michał, 2013. "On iterative premium calculation principles under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 435-440.
    13. al-Nowaihi, Ali & Bradley, Ian & Dhami, Sanjit, 2008. "A note on the utility function under prospect theory," Economics Letters, Elsevier, vol. 99(2), pages 337-339, May.
    14. Luan, Cuncun, 2001. "Insurance Premium Calculations with Anticipated Utility Theory," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 23-35, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    2. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    3. Kaluszka, Marek & Krzeszowiec, Michał, 2013. "On iterative premium calculation principles under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 435-440.
    4. Chudziak, J., 2018. "On existence and uniqueness of the principle of equivalent utility under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 243-246.
    5. Chudziak, J., 2020. "On positive homogeneity and comonotonic additivity of the principle of equivalent utility under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 154-159.
    6. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
    7. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    8. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    9. Marek Kałuszka & Wioletta Szeligowska, 2018. "On the Arrow-Pratt risk aversion model for the generalized Choquet integral," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 51, pages 169-184.
    10. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    11. Tiantian Mao & Jun Cai, 2018. "Risk measures based on behavioural economics theory," Finance and Stochastics, Springer, vol. 22(2), pages 367-393, April.
    12. Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.
    13. Roberto Cominetti & Alfredo Torrico, 2016. "Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1510-1521, November.
    14. Wioletta Szeligowska & Marek Kaluszka, 2016. "On Jensen's inequality for generalized Choquet integral with an application to risk aversion," Papers 1609.00554, arXiv.org.
    15. Martín Egozcue & Sébastien Massoni & Wing-Keung Wong & RiÄ ardas Zitikis, 2012. "Integration-segregation decisions under general value functions: "Create your own bundle — choose 1, 2, or all 3!"," Documents de travail du Centre d'Economie de la Sorbonne 12057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2016. "A life-cycle model with ambiguous survival beliefs," Journal of Economic Theory, Elsevier, vol. 162(C), pages 137-180.
    17. Carolyn Fischer & William A. Pizer, 2019. "Horizontal Equity Effects in Energy Regulation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 209-237.
    18. Sanjit Dhami & Narges Hajimoladarvish, 2020. "Mental Accounting, Loss Aversion, and Tax Evasion: Theory and Evidence," CESifo Working Paper Series 8606, CESifo.
    19. Amedeo Piolatto & Matthew D. Rablen, 2017. "Prospect theory and tax evasion: a reconsideration of the Yitzhaki puzzle," Theory and Decision, Springer, vol. 82(4), pages 543-565, April.
    20. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:31:y:2013:p:45-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.