IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1225-d1085972.html
   My bibliography  Save this article

Uniform Asymptotic Estimate for the Ruin Probability in a Renewal Risk Model with Cox–Ingersoll–Ross Returns

Author

Listed:
  • Ming Cheng

    (School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Dingcheng Wang

    (School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China)

Abstract

Consider an insurance risk model with arbitrary dependence structures between the claim sizes. Suppose that the risky investment in the insurer can be established by the Cox–Ingersoll–Ross model. When the claim-size distribution is heavy-tailed, a uniform asymptotic formula for ruin probability is obtained.

Suggested Citation

  • Ming Cheng & Dingcheng Wang, 2023. "Uniform Asymptotic Estimate for the Ruin Probability in a Renewal Risk Model with Cox–Ingersoll–Ross Returns," Mathematics, MDPI, vol. 11(5), pages 1-10, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1225-:d:1085972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    2. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    3. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    4. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ming & Konstantinides, Dimitrios G. & Wang, Dingcheng, 2022. "Uniform asymptotic estimates in a time-dependent risk model with general investment returns and multivariate regularly varying claims," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Guo, Fenglong, 2022. "Ruin probability of a continuous-time model with dependence between insurance and financial risks caused by systematic factors," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    3. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
    4. Anita Behme & Philipp Lukas Strietzel, 2021. "A $$2~{\times }~2$$ 2 × 2 random switching model and its dual risk model," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 27-64, October.
    5. Jiang, Tao & Cui, Sheng & Ming, Ruixing, 2015. "Large deviations for the stochastic present value of aggregate claims in the renewal risk model," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 83-91.
    6. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    7. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.
    8. Li, Jinzhu, 2022. "Asymptotic analysis of a dynamic systemic risk measure in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 38-56.
    9. Dawei Lu & Ting Li & Meng Yuan & Xinmei Shen, 2024. "Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-28, September.
    10. Bingzhen Geng & Yang Liu & Hongfu Wan, 2024. "Systemic Risk Asymptotics in a Renewal Model with Multiple Business Lines and Heterogeneous Claims," Papers 2410.00158, arXiv.org.
    11. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    12. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    13. Zhang, Yuanyuan & Wang, Wensheng, 2012. "Ruin probabilities of a bidimensional risk model with investment," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 130-138.
    14. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1225-:d:1085972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.