IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v276y2019i2p582-601.html
   My bibliography  Save this article

Asymptotic correlation structure of discounted Incurred But Not Reported claims under fractional Poisson arrival process

Author

Listed:
  • Cheung, Eric C.K.
  • Rabehasaina, Landy
  • Woo, Jae-Kyung
  • Xu, Ran

Abstract

This paper studies the joint moments of a compound discounted renewal process observed at different times with each arrival removed from the system after a random delay. This process can be used to describe the aggregate (discounted) Incurred But Not Reported claims in insurance and also the total number of customers in an infinite server queue. It is shown that the joint moments can be obtained recursively in terms of the renewal density, from which the covariance and correlation structures are derived. In particular, the fractional Poisson process defined via the renewal approach is also considered. Furthermore, the asymptotic behaviour of covariance and correlation coefficient of the aforementioned quantities is analyzed as the time horizon goes to infinity. Special attention is paid to the cases of exponential and Pareto delays. Some numerical examples in relation to our theoretical results are also presented.

Suggested Citation

  • Cheung, Eric C.K. & Rabehasaina, Landy & Woo, Jae-Kyung & Xu, Ran, 2019. "Asymptotic correlation structure of discounted Incurred But Not Reported claims under fractional Poisson arrival process," European Journal of Operational Research, Elsevier, vol. 276(2), pages 582-601.
  • Handle: RePEc:eee:ejores:v:276:y:2019:i:2:p:582-601
    DOI: 10.1016/j.ejor.2019.01.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719300682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.01.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ridder, Ad, 2009. "Importance sampling algorithms for first passage time probabilities in the infinite server queue," European Journal of Operational Research, Elsevier, vol. 199(1), pages 176-186, November.
    2. Woo, Jae-Kyung, 2016. "On multivariate discounted compound renewal sums with time-dependent claims in the presence of reporting/payment delays," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 354-363.
    3. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    4. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    5. Blom, Joke & De Turck, Koen & Mandjes, Michel, 2017. "Refined large deviations asymptotics for Markov-modulated infinite-server systems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1036-1044.
    6. Moiseev, Alexander & Nazarov, Anatoly, 2016. "Queueing network MAP−(GI/∞)K with high-rate arrivals," European Journal of Operational Research, Elsevier, vol. 254(1), pages 161-168.
    7. H. M. Jansen & M. R. H. Mandjes & K. De Turck & S. Wittevrongel, 2016. "A large deviations principle for infinite-server queues in a random environment," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 199-235, February.
    8. Maxim Finkelstein & Ji Hwan Cha, 2013. "Stochastic Modeling for Reliability," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-5028-2, February.
    9. Blanchet, Jose & Lam, Henry, 2013. "A heavy traffic approach to modeling large life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 237-251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    2. Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.
    3. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landy Rabehasaina & Jae-Kyung Woo, 2020. "Analysis of the infinite server queues with semi-Markovian multivariate discounted inputs," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 393-420, April.
    2. Fatma Başoğlu Kabran & Ali Devin Sezer, 2022. "Approximation of the exit probability of a stable Markov modulated constrained random walk," Annals of Operations Research, Springer, vol. 310(2), pages 431-475, March.
    3. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    4. O. J. Boxma & E. J. Cahen & D. Koops & M. Mandjes, 2019. "Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 125-153, March.
    5. Yang, Hu & Zhang, Zhimin, 2008. "Gerber-Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 984-991, June.
    6. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    7. Ren, Jiandong, 2009. "A connection between the discounted and non-discounted expected penalty functions in the Sparre Andersen risk model," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 324-330, February.
    8. Liu, Xiangdong & Xiong, Jie & Zhang, Shuaiqi, 2015. "The Gerber–Shiu discounted penalty function in the classical risk model with impulsive dividend policy," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 183-190.
    9. Ambagaspitiya, Rohana S., 2009. "Ultimate ruin probability in the Sparre Andersen model with dependent claim sizes and claim occurrence times," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 464-472, June.
    10. Kim, So-Yeun & Willmot, Gordon E., 2016. "On the analysis of ruin-related quantities in the delayed renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 77-85.
    11. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    12. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    13. Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
    14. Chadjiconstantinidis, Stathis & Papaioannou, Apostolos D., 2009. "Analysis of the Gerber-Shiu function and dividend barrier problems for a risk process with two classes of claims," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 470-484, December.
    15. Jiang, Wuyuan & Yang, Zhaojun & Li, Xinping, 2012. "The discounted penalty function with multi-layer dividend strategy in the phase-type risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1358-1366.
    16. Martín-González, Ehyter M. & Murillo-Salas, Antonio & Pantí, Henry, 2024. "A note on series representation for the q-scale function of a class of spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 210(C).
    17. Willmot, Gordon E. & Dickson, David C. M., 2003. "The Gerber-Shiu discounted penalty function in the stationary renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 403-411, July.
    18. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    19. Tsai, Cary Chi-Liang & Sun, Li-juan, 2004. "On the discounted distribution functions for the Erlang(2) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 5-19, August.
    20. Liu, Zhang & Chen, Ping & Hu, Yijun, 2020. "On the dual risk model with diffusion under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 376(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:2:p:582-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.