IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2021026.html
   My bibliography  Save this paper

Portfolio insurance under rough volatility and Volterra processes

Author

Listed:
  • Dupret, Jean-Loup

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Hainaut, Donatien

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Affine Volterra processes have gained more and more interest in recent years. In particular, this class of processes generalizes the classical Heston model for which widely-used calibration techniques have long been known, as well as the rough Heston model which has garnered lots of attention from academicians and practitioners since 2014. The aim of this work is therefore to revisit and generalize the constant propotion portfolio insurance (CPPI) under the class of affine Volterra processes. Indeed, existing simulation-based methods for CPPI do not apply easily to affine Volterra processes, in particular when the variance process of the underlying risky asset is non-Markovian in the current variance state (as in the rough Heston model). We instead propose an approach based on the characteristic function of the log-cushion which appears to be more consistent, stable and particularly efficient in the case of affine Volterra processes compared with classical simulation techniques. Using such approach, we describe in this paper several properties of CPPI (moments, density and risk measures), which naturally result from the form of the log-cushion’s characteristic function under affine Volterra processes. This allows to consider different behaviors and more complex dynamics for the underlying risky asset in the context of CPPI and hence build portfolio strategies that are extremely tractable and consistent with financial data.

Suggested Citation

  • Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Discussion Papers ISBA 2021026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2021026
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A246699/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    2. Ben Ameur, H. & Prigent, J.-L., 2018. "Risk management of time varying floors for dynamic portfolio insurance," European Journal of Operational Research, Elsevier, vol. 269(1), pages 363-381.
    3. Jim Gatheral & Martin Keller-Ressel, 2019. "Affine forward variance models," Finance and Stochastics, Springer, vol. 23(3), pages 501-533, July.
    4. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    5. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    6. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    7. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    8. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    9. Kingston, Geoffrey, 1989. "Theoretical foundations of constant-proportion portfolio insurance," Economics Letters, Elsevier, vol. 29(4), pages 345-347.
    10. Bertrand, Philippe & Prigent, Jean-luc, 2019. "On the optimality of path-dependent structured funds: The cost of standardization," European Journal of Operational Research, Elsevier, vol. 277(1), pages 333-350.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. Philippe Bertrand & Jean-Luc Prigent, 2003. "Portfolio Insurance Strategies: A Comparison of Standard Methods When the Volatility of the Stock is Stochastic," Post-Print hal-01833118, HAL.
    13. Grossman, Sanford J. & Vila, Jean-Luc, 1992. "Optimal Dynamic Trading with Leverage Constraints," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(2), pages 151-168, June.
    14. Dupret, Jean-Loup & Barbarin, Jérôme & Hainaut, Donatien, 2021. "Impact of rough stochastic volatility models on long-term life insurance pricing," LIDAM Discussion Papers ISBA 2021017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Branger, Nicole & Mahayni, Antje & Schneider, Judith C., 2010. "On the optimal design of insurance contracts with guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 485-492, June.
    16. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    17. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    18. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    19. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    20. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "A fractional Hawkes process for illiquidity modeling," LIDAM Discussion Papers ISBA 2023001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Hainaut, Donatien, 2022. "Pricing of spread and exchange options in a rough jump-diffusion market," LIDAM Discussion Papers ISBA 2022012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Hainaut, Donatien, 2022. "Multivariate rough claim processes: properties and estimation," LIDAM Discussion Papers ISBA 2022002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.
    5. Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    2. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    3. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    4. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    5. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    6. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    7. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    8. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    9. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    10. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    11. Qinwen Zhu & Gr'egoire Loeper & Wen Chen & Nicolas Langren'e, 2020. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Papers 2007.02113, arXiv.org.
    12. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    13. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    14. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    15. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Working Papers hal-02910724, HAL.
    16. Jan Matas & Jan Posp'iv{s}il, 2021. "On simulation of rough Volterra stochastic volatility models," Papers 2108.01999, arXiv.org, revised Aug 2022.
    17. Paul Hager & Eyal Neuman, 2020. "The Multiplicative Chaos of $H=0$ Fractional Brownian Fields," Papers 2008.01385, arXiv.org.
    18. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    19. Dupret, Jean-Loup & Barbarin, Jérôme & Hainaut, Donatien, 2021. "Impact of rough stochastic volatility models on long-term life insurance pricing," LIDAM Discussion Papers ISBA 2021017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.

    More about this item

    Keywords

    Finance ; Portfolio insurance ; CPPI ; Volterra processes ; Rough volatility;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2021026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.