IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2021051.html
   My bibliography  Save this paper

Portfolio insurance under rough volatility and Volterra processes

Author

Listed:
  • Dupret, Jean-Loup

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Hainaut, Donatien

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Affine Volterra processes have gained more and more interest in recent years. In particular, this class of processes generalizes the classical Heston model and the more recent rough Heston model. The aim of this work is hence to revisit and generalize the constant proportion portfolio insurance (CPPI) under affine Volterra processes. Indeed, existing simulation-based methods for CPPI do not apply easily to this class of processes. We instead propose an approach based on the characteristic function of the log-cushion which appears to be more consistent, stable and particularly efficient in the case of saffine Volterra processes compared with the existing simulation techniques. Using such approach, we describe in this paper several properties of CPPI which naturally result from the form of the log-cushion’s characteristic function under affine Volterra processes. This allows to consider more realistic dynamics for the underlying risky asset in the context of CPPI and hence build portfolio strategies that are more consistent with financial data. In particular, we address the case of the rough Heston model, known to be extremely consistent with past data of volatility. By providing a new estimation procedure for its parameters based on the PMCMC algorithm, we manage to study more accurately the true properties of such CPPI strategy and to better handle the risk associated with it.

Suggested Citation

  • Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Reprints ISBA 2021051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2021051
    DOI: https://doi.org/10.1142/S0219024921500369
    Note: In: International Journal of Theoretical and Applied Finance, 2021
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "A fractional Hawkes process for illiquidity modeling," LIDAM Discussion Papers ISBA 2023001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Hainaut, Donatien, 2022. "Pricing of spread and exchange options in a rough jump-diffusion market," LIDAM Discussion Papers ISBA 2022012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hainaut, Donatien, 2022. "Multivariate rough claim processes: properties and estimation," LIDAM Discussion Papers ISBA 2022002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2021051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.