IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1400-d402017.html
   My bibliography  Save this article

Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution

Author

Listed:
  • Catalina Bolancé

    (Department of Econometrics, Riskcenter-IREA University of Barcelona, Av. Diagonal, 690, 08034 Barcelona, Spain
    These authors contributed equally to this work.)

  • Raluca Vernic

    (Faculty of Mathematics and Computer Science, Ovidius University of Constanta, 124 Mamaia Blvd., Constanta, and Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie 13, 050711 Bucharest, Romania
    These authors contributed equally to this work.)

Abstract

In actuarial mathematics, the claims of an insurance portfolio are often modeled using the collective risk model, which consists of a random number of claims of independent, identically distributed (i.i.d.) random variables (r.v.s) that represent cost per claim. To facilitate computations, there is a classical assumption of independence between the random number of such random variables (i.e., the claims frequency) and the random variables themselves (i.e., the claim severities). However, recent studies showed that, in practice, this assumption does not always hold, hence, introducing dependence in the collective model becomes a necessity. In this sense, one trend consists of assuming dependence between the number of claims and their average severity. Alternatively, we can consider heterogeneity between the individual cost of claims associated with a given number of claims. Using the Sarmanov distribution, in this paper we aim at introducing dependence between the number of claims and the individual claim severities. As marginal models, we use the Poisson and Negative Binomial (NB) distributions for the number of claims, and the Gamma and Lognormal distributions for the cost of claims. The maximum likelihood estimation of the proposed Sarmanov distribution is discussed. We present a numerical study using a real data set from a Spanish insurance portfolio.

Suggested Citation

  • Catalina Bolancé & Raluca Vernic, 2020. "Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1400-:d:402017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    2. Tamraz, Maissa & Vernic, Raluca, 2018. "On The Evaluation Of Multivariate Compound Distributions With Continuous Severity Distributions And Sarmanov'S Counting Distribution," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 841-870, May.
    3. Ratovomirija, Gildas & Tamraz, Maissa & Vernic, Raluca, 2017. "On some multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 197-209.
    4. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    5. Bolancé, Catalina & Vernic, Raluca, 2019. "Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 89-103.
    6. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    7. Anas Abdallah & Jean-Philippe Boucher & Hélène Cossette & Julien Trufin, 2016. "Sarmanov Family of Bivariate Distributions for Multivariate Loss Reserving Analysis," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(2), pages 184-200, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
    2. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    3. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    5. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    6. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    7. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    8. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    9. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    10. Khouzeima Moutanabbir & Hassan Abdelrahman, 2022. "Bivariate Sarmanov Phase-Type Distributions for Joint Lifetimes Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1093-1118, June.
    11. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    12. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    13. Anas Abdallah & Lan Wang, 2023. "Rank-Based Multivariate Sarmanov for Modeling Dependence between Loss Reserves," Risks, MDPI, vol. 11(11), pages 1-37, October.
    14. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    15. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    16. Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
    17. Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
    18. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    19. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    20. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1400-:d:402017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.