IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v28y2011i4p281-294.html
   My bibliography  Save this article

Will the frog change into a prince? Predicting future customer profitability

Author

Listed:
  • Rust, Roland T.
  • Kumar, V.
  • Venkatesan, Rajkumar

Abstract

More and more companies have customer databases that enable them to analyze customer profitability over time. These companies often seek to determine the most important customers as indicated by their current or historical profitability and focus attention on them. Focusing on profitable customers can result in more efficient use of marketing resources, but this approach neglects the fact that customers can evolve over time. Some customers begin as low-profit customers but eventually develop into high-profit customers. Others may start out as high-profit customers but become unprofitable over time. Previous efforts to predict future profitability have been relatively unsuccessful, with relatively simple, naïve models often performing just as well as or better than more sophisticated ones. Our paper presents a new approach to predicting customer profitability in future periods that performs significantly better than naïve models. We estimate the models on data from a high-tech company in a business-to-business context and validate the models' predictive ability on a holdout sample.

Suggested Citation

  • Rust, Roland T. & Kumar, V. & Venkatesan, Rajkumar, 2011. "Will the frog change into a prince? Predicting future customer profitability," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 281-294.
  • Handle: RePEc:eee:ijrema:v:28:y:2011:i:4:p:281-294
    DOI: 10.1016/j.ijresmar.2011.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811611000644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2011.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Kumar & Rajkumar Venkatesan & Tim Bohling & Denise Beckmann, 2008. "—The Power of CLV: Managing Customer Lifetime Value at IBM," Marketing Science, INFORMS, vol. 27(4), pages 585-599, 07-08.
    2. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    3. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    4. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    5. Pradeep K. Chintagunta, 1999. "Variety Seeking, Purchase Timing, and the "Lightning Bolt" Brand Choice Model," Management Science, INFORMS, vol. 45(4), pages 486-498, April.
    6. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    7. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmet Tuz & Begum Sertyesilisik, 2020. "Finding and Minding the Gaps in State-Of-The-Art Lean and Green Marketing in the Construction Industry," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 32(2), pages 187-203.
    2. Kati Stormi & Anni Lindholm & Teemu Laine & Tuomas Korhonen, 2020. "RFM customer analysis for product-oriented services and service business development: an interventionist case study of two machinery manufacturers," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 24(3), pages 623-653, September.
    3. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    4. Mark, Tanya & Lemon, Katherine N. & Vandenbosch, Mark & Bulla, Jan & Maruotti, Antonello, 2013. "Capturing the Evolution of Customer–Firm Relationships: How Customers Become More (or Less) Valuable Over Time," Journal of Retailing, Elsevier, vol. 89(3), pages 231-245.
    5. Lepthien, Anke & Papies, Dominik & Clement, Michel & Melnyk, Valentyna, 2017. "The ugly side of customer management – Consumer reactions to firm-initiated contract terminations," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 829-850.
    6. Ho, Hillbun & Tien, Keng-Ming (Terence) & Wu, Anne & Singh, Sonika, 2021. "A sequence analysis approach to segmenting credit card customers," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    7. Lhoest-Snoeck, Sietske & van Nierop, Erjen & Verhoef, Peter C., 2014. "For New Customers Only: A Study on the Effect of Acquisition Campaigns on a Service Company's Existing Customers' CLV," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 210-224.
    8. Sunčica Rogić & Ljiljana Kašćelan & Vladimir Kašćelan & Vladimir Đurišić, 2022. "Automatic customer targeting: a data mining solution to the problem of asymmetric profitability distribution," Information Technology and Management, Springer, vol. 23(4), pages 315-333, December.
    9. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
    10. Libai, Barak & Bart, Yakov & Gensler, Sonja & Hofacker, Charles F. & Kaplan, Andreas & Kötterheinrich, Kim & Kroll, Eike Benjamin, 2020. "Brave New World? On AI and the Management of Customer Relationships," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 44-56.
    11. Martínez, Andrés & Schmuck, Claudia & Pereverzyev, Sergiy & Pirker, Clemens & Haltmeier, Markus, 2020. "A machine learning framework for customer purchase prediction in the non-contractual setting," European Journal of Operational Research, Elsevier, vol. 281(3), pages 588-596.
    12. Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
    13. Roland T. Rust & Ming-Hui Huang, 2014. "The Service Revolution and the Transformation of Marketing Science," Marketing Science, INFORMS, vol. 33(2), pages 206-221, March.
    14. Butori, Raphaëlle & De Bruyn, Arnaud, 2013. "So you want to delight your customers: The perils of ignoring heterogeneity in customer evaluations of discretionary preferential treatments," International Journal of Research in Marketing, Elsevier, vol. 30(4), pages 358-367.
    15. Leigh McAlister & Shameek Sinha, 2021. "A customer portfolio management model that relates company’s marketing to its long-term survival," Journal of the Academy of Marketing Science, Springer, vol. 49(3), pages 584-600, May.
    16. Kohsuke Matsuoka, 2020. "Exploring the interface between management accounting and marketing: a literature review of customer accounting," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 157-208, September.
    17. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    18. Ramazan Esmeli & Mohamed Bader-El-Den & Hassana Abdullahi, 2021. "Towards early purchase intention prediction in online session based retailing systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 697-715, September.
    19. Dongyun Nie & Michael Scriney & Xiaoning Liang & Mark Roantree, 2024. "From data acquisition to validation: a complete workflow for predicting individual customer lifetime value," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 321-341, June.
    20. Ćorić, Ivica, 2016. "Comparison of Multivariate Statistical Analysis and Machine Learning Methods in Retailing: Research Framework Proposition," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2016), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 8-9 September 2016, pages 76-82, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    21. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajkumar Venkatesan & Alexander Bleier & Werner Reinartz & Nalini Ravishanker, 2019. "Improving customer profit predictions with customer mindset metrics through multiple overimputation," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 771-794, September.
    2. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    3. Albers, Sönke, 2012. "Optimizable and implementable aggregate response modeling for marketing decision support," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 111-122.
    4. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    5. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    6. V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
    7. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    8. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    9. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2013. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Papers 1304.5380, arXiv.org, revised May 2014.
    10. David A. Schweidel & Eric T. Bradlow & Peter S. Fader, 2011. "Portfolio Dynamics for Customers of a Multiservice Provider," Management Science, INFORMS, vol. 57(3), pages 471-486, March.
    11. Eva Blömeke & Michel Clement, 2009. "Selektives Demarketing — Management von unprofitablen Kunden," Schmalenbach Journal of Business Research, Springer, vol. 61(7), pages 804-835, November.
    12. Hruschka, Harald, 2010. "Considering endogeneity for optimal catalog allocation in direct marketing," European Journal of Operational Research, Elsevier, vol. 206(1), pages 239-247, October.
    13. Thomas, Suman Ann & Feng, Shanfei & Krishnan, Trichy V., 2015. "To retain? To upgrade? The effects of direct mail on regular donation behavior," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 48-63.
    14. Reimer, Kerstin & Albers, Sönke, 2011. "Modeling Repeat Purchases in the Internet when RFM Captures Past Influence of Marketing," EconStor Preprints 50730, ZBW - Leibniz Information Centre for Economics.
    15. Audzeyeva, Alena & Summers, Barbara & Schenk-Hoppé, Klaus Reiner, 2012. "Forecasting customer behaviour in a multi-service financial organisation: A profitability perspective," International Journal of Forecasting, Elsevier, vol. 28(2), pages 507-518.
    16. Mark, Tanya & Lemon, Katherine N. & Vandenbosch, Mark & Bulla, Jan & Maruotti, Antonello, 2013. "Capturing the Evolution of Customer–Firm Relationships: How Customers Become More (or Less) Valuable Over Time," Journal of Retailing, Elsevier, vol. 89(3), pages 231-245.
    17. Petr Čermák, 2013. "Analysis of customer lifetime value model: Literature review [Analýza modelu hodnoty životního cyklu zákazníků: přehled literatury]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2013(4), pages 84-95.
    18. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    19. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    20. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2014. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 305-329, September.
    21. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:28:y:2011:i:4:p:281-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.