Automatic customer targeting: a data mining solution to the problem of asymmetric profitability distribution
Author
Abstract
Suggested Citation
DOI: 10.1007/s10799-021-00353-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rishika Rishika & Ashish Kumar & Ramkumar Janakiraman & Ram Bezawada, 2013. "The Effect of Customers' Social Media Participation on Customer Visit Frequency and Profitability: An Empirical Investigation," Information Systems Research, INFORMS, vol. 24(1), pages 108-127, March.
- Rust, Roland T. & Kumar, V. & Venkatesan, Rajkumar, 2011. "Will the frog change into a prince? Predicting future customer profitability," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 281-294.
- Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
- J. D’Haen & D. Van Den Poel & D. Thorleuchter, 2012. "Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/818, Ghent University, Faculty of Economics and Business Administration.
- María Teresa Ballestar & Pilar Grau-Carles & Jorge Sainz, 2019. "Predicting customer quality in e-commerce social networks: a machine learning approach," Review of Managerial Science, Springer, vol. 13(3), pages 589-603, June.
- McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Verhoef, P.C. & Donkers, A.C.D., 2001. "Predicting Customer Potential Value: an application in the insurance industry," ERIM Report Series Research in Management ERS-2001-01-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
- Montserrat Guillén & Ana María Pérez-Marín & Montserrat Guillén, 2011. "A logistic regression approach to estimating customer profit loss due to lapses in insurance," Working Papers XREAP2011-13, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2011.
- Lhoest-Snoeck, Sietske & van Nierop, Erjen & Verhoef, Peter C., 2014. "For New Customers Only: A Study on the Effect of Acquisition Campaigns on a Service Company's Existing Customers' CLV," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 210-224.
- Ahmet Tuz & Begum Sertyesilisik, 2020. "Finding and Minding the Gaps in State-Of-The-Art Lean and Green Marketing in the Construction Industry," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 32(2), pages 187-203.
- Boucher, Jean-Philippe & Couture-Piché, Guillaume, 2015. "Modeling the number of insureds’ cars using queuing theory," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 67-76.
- Dongyun Nie & Michael Scriney & Xiaoning Liang & Mark Roantree, 2024. "From data acquisition to validation: a complete workflow for predicting individual customer lifetime value," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 321-341, June.
- L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
- D. F. Benoit & D. Van Den Poel, 2009. "Benefits of Quantile Regression for the Analysis of Customer Lifetime Value in a Contractual Setting: An Application in Financial Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/551, Ghent University, Faculty of Economics and Business Administration.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
- Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017.
"Beyond average energy consumption in the French residential housing market: A household classification approach,"
Energy Policy, Elsevier, vol. 107(C), pages 82-95.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386095, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-02475511, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-04141605, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," EconomiX Working Papers 2016-6, University of Paris Nanterre, EconomiX.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01586597, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386101, HAL.
- Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019.
"The Impact of Big Data on Firm Performance: An Empirical Investigation,"
AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
- Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2018. "The Impact of Big Data on Firm Performance: An Empirical Investigation," NBER Working Papers 24334, National Bureau of Economic Research, Inc.
- Nathan, Max & Rosso, Anna, 2014.
"Mapping information economy businesses with big data: findings from the UK,"
LSE Research Online Documents on Economics
60615, London School of Economics and Political Science, LSE Library.
- Max Nathan & Anna Rosso, 2014. "Mapping Information Economy Business with Big Data: Findings from the UK," National Institute of Economic and Social Research (NIESR) Discussion Papers 442, National Institute of Economic and Social Research.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
- I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
- Bertschek, Irene & Kesler, Reinhold, 2022.
"Let the user speak: Is feedback on Facebook a source of firms’ innovation?,"
Information Economics and Policy, Elsevier, vol. 60(C).
- Bertschek, Irene & Kesler, Reinhold, 2018. "Let the user speak: Is feedback on Facebook a source of firms' innovation?," ZEW Discussion Papers 17-015, ZEW - Leibniz Centre for European Economic Research, revised 2018.
- Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
- Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
More about this item
Keywords
Customer profitability; Marketing analytics; Data mining; Support vector regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infotm:v:23:y:2022:i:4:d:10.1007_s10799-021-00353-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.