IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v74y2012i2p620-636.html
   My bibliography  Save this article

Learning to bid: The design of auctions under uncertainty and adaptation

Author

Listed:
  • Noe, Thomas H.
  • Rebello, Michael
  • Wang, Jun

Abstract

We examine auction design in a context where symmetrically informed adaptive agents with common valuations learn to bid for a good. Despite the absence of private valuations, asymmetric information, or risk aversion, bidder strategies do not converge to the Bertrand–Nash equilibrium strategies even in the long run. Deviations from equilibrium strategies depend on uncertainty regarding the value of the good, auction structure, the agentsʼ learning model, and the number of bidders. Although individual agents learn Nash bidding strategies in isolation, the learning of each agent, by flattening the best-reply correspondence of other agents, blocks common learning. These negative externalities are more severe in second-price auctions, auctions with many bidders, and auctions where the good has an uncertain value ex post.

Suggested Citation

  • Noe, Thomas H. & Rebello, Michael & Wang, Jun, 2012. "Learning to bid: The design of auctions under uncertainty and adaptation," Games and Economic Behavior, Elsevier, vol. 74(2), pages 620-636.
  • Handle: RePEc:eee:gamebe:v:74:y:2012:i:2:p:620-636
    DOI: 10.1016/j.geb.2011.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825611001333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2011.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goeree, Jacob K. & Holt, Charles A. & Palfrey, Thomas R., 2002. "Quantal Response Equilibrium and Overbidding in Private-Value Auctions," Journal of Economic Theory, Elsevier, vol. 104(1), pages 247-272, May.
    2. Paul Klemperer, 2003. "Alfred Marshall Lecture: Using and Abusing Economic Theory," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 272-300, 04/05.
    3. Paul Klemperer, 2002. "Using and Abusing Economic Theory," Economics Papers 2003-W02, Economics Group, Nuffield College, University of Oxford.
    4. Dufwenberg, Martin & Gneezy, Uri, 2000. "Price competition and market concentration: an experimental study," International Journal of Industrial Organization, Elsevier, vol. 18(1), pages 7-22, January.
    5. Glenn Harrison & E. Rutström, 2009. "Expected utility theory and prospect theory: one wedding and a decent funeral," Experimental Economics, Springer;Economic Science Association, vol. 12(2), pages 133-158, June.
    6. Novkovic, Sonja, 1998. "A Genetic Algorithm Simulation of a Transition Economy: An Application to Insider-Privatization in Croatia," Computational Economics, Springer;Society for Computational Economics, vol. 11(3), pages 221-243, June.
    7. Lettau, Martin, 1997. "Explaining the facts with adaptive agents: The case of mutual fund flows," Journal of Economic Dynamics and Control, Elsevier, vol. 21(7), pages 1117-1147, June.
    8. E. Elisabet RutstrÃm, 1998. "Home-grown values and incentive compatible auction design," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 427-441.
    9. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    10. Thomas H. Noe & Michael J. Rebello & Jun Wang, 2006. "The Evolution of Security Designs," Journal of Finance, American Finance Association, vol. 61(5), pages 2103-2135, October.
    11. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    12. Glenn W. Harrison & Ronald M. Harstad & E. Elisabet Rutstr–m, 2004. "Experimental Methods and Elicitation of Values," Experimental Economics, Springer;Economic Science Association, vol. 7(2), pages 123-140, June.
    13. Merlo, Antonio & Schotter, Andrew, 1992. "Theory and Misbehavior of First-Price Auctions: Comment," American Economic Review, American Economic Association, vol. 82(5), pages 1413-1425, December.
    14. Milgrom, Paul R & Weber, Robert J, 1982. "A Theory of Auctions and Competitive Bidding," Econometrica, Econometric Society, vol. 50(5), pages 1089-1122, September.
    15. Andreoni James & Miller John H., 1995. "Auctions with Artificial Adaptive Agents," Games and Economic Behavior, Elsevier, vol. 10(1), pages 39-64, July.
    16. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    17. Chen, Yan & Katuscak, Peter & Ozdenoren, Emre, 2007. "Sealed bid auctions with ambiguity: Theory and experiments," Journal of Economic Theory, Elsevier, vol. 136(1), pages 513-535, September.
    18. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 9-41, June.
    19. Cox, James C & Oaxaca, Ronald L, 1999. "Can Supply and Demand Parameters Be Recovered from Data Generated by Market Institutions?," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 285-297, July.
    20. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    21. Kagel, John H. & Levin, Dan, 1986. "The Winner's Curse and Public Information in Common Value Auctions," American Economic Review, American Economic Association, vol. 76(5), pages 894-920, December.
    22. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 1999. "Learning in Cournot Oligopoly--An Experiment," Economic Journal, Royal Economic Society, vol. 109(454), pages 80-95, March.
    23. Harrison, Glenn W, 1989. "Theory and Misbehavior of First-Price Auctions," American Economic Review, American Economic Association, vol. 79(4), pages 749-762, September.
    24. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    25. Noe, Thomas H. & Pi, Lynn, 2000. "Learning dynamics, genetic algorithms, and corporate takeovers," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 189-217, February.
    26. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    27. Arifovic, Jasmina & Ledyard, John, 2007. "Call market book information and efficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1971-2000, June.
    28. Routledge, Bryan R., 2001. "Genetic Algorithm Learning To Choose And Use Information," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 303-325, April.
    29. repec:cup:cbooks:9780521555838 is not listed on IDEAS
    30. Bower, John & Bunn, Derek, 2001. "Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 561-592, March.
    31. Dawid, Herbert, 1999. "On the convergence of genetic learning in a double auction market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1545-1567, September.
    32. Kagel, John H & Harstad, Ronald M & Levin, Dan, 1987. "Information Impact and Allocation Rules in Auctions with Affiliated Private Values: A Laboratory Study," Econometrica, Econometric Society, vol. 55(6), pages 1275-1304, November.
    33. Harrison, Glenn W, 1992. "Theory and Misbehavior of First-Price Auctions: Reply," American Economic Review, American Economic Association, vol. 82(5), pages 1426-1443, December.
    34. Gale, John & Binmore, Kenneth G. & Samuelson, Larry, 1995. "Learning to be imperfect: The ultimatum game," Games and Economic Behavior, Elsevier, vol. 8(1), pages 56-90.
    35. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    36. Ronald Harstad, 2000. "Dominant Strategy Adoption and Bidders' Experience with Pricing Rules," Experimental Economics, Springer;Economic Science Association, vol. 3(3), pages 261-280, December.
    37. Thomas H. Noe & Michael J. Rebello & Jun Wang, 2003. "Corporate Financing: An Artificial Agent‐based Analysis," Journal of Finance, American Finance Association, vol. 58(3), pages 943-973, June.
    38. Tibor Neugebauer, 2007. "Bid and price effects of increased competition in the first-price auction: experimental evidence," LSF Research Working Paper Series 07-17, Luxembourg School of Finance, University of Luxembourg.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banerjee, Prasenjit & Shogren, Jason F., 2014. "Bidding behavior given point and interval values in a second-price auction," Journal of Economic Behavior & Organization, Elsevier, vol. 97(C), pages 126-137.
    2. Lorentziadis, Panos L., 2016. "Optimal bidding in auctions from a game theory perspective," European Journal of Operational Research, Elsevier, vol. 248(2), pages 347-371.
    3. Christopher Boyer & B. Brorsen, 2014. "Implications of a Reserve Price in an Agent-Based Common-Value Auction," Computational Economics, Springer;Society for Computational Economics, vol. 43(1), pages 33-51, January.
    4. Christoph Graf & Viktor Zobernig & Johannes Schmidt & Claude Klöckl, 2024. "Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 529-576, February.
    5. Christopher Boyer & B. Brorsen & Tong Zhang, 2014. "Common-value auction versus posted-price selling: an agent-based model approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 129-149, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    2. Breitmoser, Yves & Schweighofer-Kodritsch, Sebastian, 2019. "Obviousness around the clock," Discussion Papers, Research Unit: Market Behavior SP II 2019-203, WZB Berlin Social Science Center.
    3. Andreas Roider & Patrick W. Schmitz, 2012. "Auctions with Anticipated Emotions: Overbidding, Underbidding, and Optimal Reserve Prices," Scandinavian Journal of Economics, Wiley Blackwell, vol. 114(3), pages 808-830, September.
    4. Glenn W. Harrison & John A. List, 2004. "Field Experiments," Journal of Economic Literature, American Economic Association, vol. 42(4), pages 1009-1055, December.
    5. Vincent P. Crawford & Nagore Iriberri, 2007. "Level-k Auctions: Can a Nonequilibrium Model of Strategic Thinking Explain the Winner's Curse and Overbidding in Private-Value Auctions?," Econometrica, Econometric Society, vol. 75(6), pages 1721-1770, November.
    6. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    7. Thomas H. Noe & Michael J. Rebello & Jun Wang, 2006. "The Evolution of Security Designs," Journal of Finance, American Finance Association, vol. 61(5), pages 2103-2135, October.
    8. Patrick Bajari & Ali Hortacsu, 2005. "Are Structural Estimates of Auction Models Reasonable? Evidence from Experimental Data," Journal of Political Economy, University of Chicago Press, vol. 113(4), pages 703-741, August.
    9. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    10. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    11. Neugebauer, Tibor & Selten, Reinhard, 2006. "Individual behavior of first-price auctions: The importance of information feedback in computerized experimental markets," Games and Economic Behavior, Elsevier, vol. 54(1), pages 183-204, January.
    12. Arifovic, Jasmina & He, Xue-zhong & Wei, Lijian, 2022. "Machine learning and speed in high-frequency trading," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    13. Yves Breitmoser & Sebastian Schweighofer-Kodritsch, 2022. "Obviousness around the clock," Experimental Economics, Springer;Economic Science Association, vol. 25(2), pages 483-513, April.
    14. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    15. Marco Casari, 2004. "Can Genetic Algorithms Explain Experimental Anomalies?," Computational Economics, Springer;Society for Computational Economics, vol. 24(3), pages 257-275, March.
    16. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    17. Jinkwon Lee, 2007. "Repetition And Financial Incentives In Economics Experiments," Journal of Economic Surveys, Wiley Blackwell, vol. 21(3), pages 628-681, July.
    18. Goeree, Jacob K. & Holt, Charles A. & Palfrey, Thomas R., 2002. "Quantal Response Equilibrium and Overbidding in Private-Value Auctions," Journal of Economic Theory, Elsevier, vol. 104(1), pages 247-272, May.
    19. David J. Cooper & Hanming Fang, 2008. "Understanding Overbidding in Second Price Auctions: An Experimental Study," Economic Journal, Royal Economic Society, vol. 118(532), pages 1572-1595, October.
    20. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).

    More about this item

    Keywords

    Auction design; Adaptive learning; Genetic algorithm;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:74:y:2012:i:2:p:620-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.