IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v24y2004i3p257-275.html
   My bibliography  Save this article

Can Genetic Algorithms Explain Experimental Anomalies?

Author

Listed:
  • Marco Casari

Abstract

In experimental data, it is common to find persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm (GA), where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • Marco Casari, 2004. "Can Genetic Algorithms Explain Experimental Anomalies?," Computational Economics, Springer;Society for Computational Economics, vol. 24(3), pages 257-275, March.
  • Handle: RePEc:kap:compec:v:24:y:2004:i:3:p:257-275
    DOI: 10.1007/s10614-004-4197-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-004-4197-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-004-4197-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    2. John Ledyard & Jasmina Arifovic, 2003. "Computer Testbeds: The Dynamics of Groves-Ledyard Mechanisms," Computing in Economics and Finance 2003 244, Society for Computational Economics.
    3. Tatsuyoshi, S. & Nakamura, H., 1995. "The 'Spite' Dilema in Voluntary Contribution Mechanism Experiments," ISER Discussion Paper 0370, Institute of Social and Economic Research, Osaka University.
    4. Palfrey, Thomas R & Prisbrey, Jeffrey E, 1997. "Anomalous Behavior in Public Goods Experiments: How Much and Why?," American Economic Review, American Economic Association, vol. 87(5), pages 829-846, December.
    5. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    6. Andreoni James & Miller John H., 1995. "Auctions with Artificial Adaptive Agents," Games and Economic Behavior, Elsevier, vol. 10(1), pages 39-64, July.
    7. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    8. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    9. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    10. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 124-124.
    11. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    12. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    13. Dawid, Herbert, 1999. "On the convergence of genetic learning in a double auction market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1545-1567, September.
    14. Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
    15. Thomas Riechmann, 1999. "Learning and behavioral stability An economic interpretation of genetic algorithms," Journal of Evolutionary Economics, Springer, vol. 9(2), pages 225-242.
    16. Cox, James C. & Walker, Mark, 1998. "Learning to play Cournot duopoly strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 36(2), pages 141-161, August.
    17. Laury, Susan K. & Holt, Charles A., 2008. "Voluntary Provision of Public Goods: Experimental Results with Interior Nash Equilibria," Handbook of Experimental Economics Results, in: Charles R. Plott & Vernon L. Smith (ed.), Handbook of Experimental Economics Results, edition 1, volume 1, chapter 84, pages 792-801, Elsevier.
    18. Elena Rocco & Massimo Warglien, 1996. "Computer Mediated Communication and the Emergence of "Electronic Opportunism"," CEEL Working Papers 9601, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
    19. Walker, James M. & Gardner, Roy & Ostrom, Elinor, 1990. "Rent dissipation in a limited-access common-pool resource: Experimental evidence," Journal of Environmental Economics and Management, Elsevier, vol. 19(3), pages 203-211, November.
    20. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    21. Casari, Marco & Plott, Charles R., 2003. "Decentralized management of common property resources: experiments with a centuries-old institution," Journal of Economic Behavior & Organization, Elsevier, vol. 51(2), pages 217-247, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.
    2. William Tracy, 2014. "Paradox Lost: The Evolution of Strategies in Selten’s Chain Store Game," Computational Economics, Springer;Society for Computational Economics, vol. 43(1), pages 83-103, January.
    3. Sylvie Geisendorf, 2018. "Evolutionary Climate-Change Modelling: A Multi-Agent Climate-Economic Model," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 921-951, October.
    4. Kirill Chernomaz, 2014. "Adaptive learning in an asymmetric auction: genetic algorithm approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 27-51, April.
    5. Shu‐Heng Chen & Shu G. Wang, 2011. "Emergent Complexity In Agent‐Based Computational Economics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(3), pages 527-546, July.
    6. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    7. Sylvie Geisendorf, 2011. "Internal selection and market selection in economic Genetic Algorithms," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 817-841, December.
    8. Shu-Heng Chan & Shu G. Wang, 2010. "Emergent Complexity in Agent-Based Computational Economics," ASSRU Discussion Papers 1017, ASSRU - Algorithmic Social Science Research Unit.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    2. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    3. Marco Casari, 2003. "Does bounded rationality lead to individual heterogeneity? The impact of the experimentation process and of memory constraints," UFAE and IAE Working Papers 583.03, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    4. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    5. Sylvie Geisendorf, 2011. "Internal selection and market selection in economic Genetic Algorithms," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 817-841, December.
    6. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    7. Kirill Chernomaz, 2014. "Adaptive learning in an asymmetric auction: genetic algorithm approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 27-51, April.
    8. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    9. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    10. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    11. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
    12. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    13. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
    14. Casari, Marco & Plott, Charles R., 2003. "Decentralized management of common property resources: experiments with a centuries-old institution," Journal of Economic Behavior & Organization, Elsevier, vol. 51(2), pages 217-247, June.
    15. Riechmann, Thomas, 2001. "Genetic algorithm learning and evolutionary games," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 1019-1037, June.
    16. Ludo Waltman & Nees Eck & Rommert Dekker & Uzay Kaymak, 2011. "Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 737-756, December.
    17. Noe, Thomas H. & Rebello, Michael & Wang, Jun, 2012. "Learning to bid: The design of auctions under uncertainty and adaptation," Games and Economic Behavior, Elsevier, vol. 74(2), pages 620-636.
    18. Smith, Peter, 2004. "Reworking the Standard Model of Competitive Markets: The Role of Fuzzy Logic and Genetic Algorithms in Modelling Complex Non-Linear Economic System," General Discussion Papers 30569, University of Manchester, Institute for Development Policy and Management (IDPM).
    19. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics To Graduate Students," Economic Reports 18193, Iowa State University, Department of Economics.
    20. Thomas Riechmann, 1999. "Learning and behavioral stability An economic interpretation of genetic algorithms," Journal of Evolutionary Economics, Springer, vol. 9(2), pages 225-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:24:y:2004:i:3:p:257-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.