IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v139y2022ics0165188922001439.html
   My bibliography  Save this article

Machine learning and speed in high-frequency trading

Author

Listed:
  • Arifovic, Jasmina
  • He, Xue-zhong
  • Wei, Lijian

Abstract

The creative destruction wrought by high-frequency algorithmic trading has raised increasing concerns about the effect of machine learning behaviors and ultra high-frequency trading on financial markets. By employing a genetic algorithm with a classifier system as an adaptive learning tool, we address some of these concerns by studying a dynamic limit order market model with asymmetric information and varying speeds of high-frequency trading (HFT). We show that HFT benefits uninformed traders, improves information efficiency but reduces market liquidity. We find that there is a trade-off where a competition effect erodes the information and speed advantages of high-frequency traders, increasing trading speeds of HF traders reduces market liquidity but generates a hump-shaped relationship to the profitability of high-frequency traders and information efficiency. This research finds there may be potential benefits to throttling the trading speed arms race to improve market efficiency. We also find that strategic algorithmic trading compensates for diminishments in speed advantages, providing an insight on machine behavior in the FinTech age.

Suggested Citation

  • Arifovic, Jasmina & He, Xue-zhong & Wei, Lijian, 2022. "Machine learning and speed in high-frequency trading," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:dyncon:v:139:y:2022:i:c:s0165188922001439
    DOI: 10.1016/j.jedc.2022.104438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188922001439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2022.104438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. Ladley, Daniel, 2020. "The high frequency trade off between speed and sophistication," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    3. Rosu , Ioanid, 2016. "Fast and Slow Informed Trading," HEC Research Papers Series 1123, HEC Paris.
    4. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    5. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    6. F. Douglas Foster & Xue-Zhong He & Junqing Kang & Shen Lin, 2019. "The Microstructure of Endogenous Liquidity Provision," Research Paper Series 402, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Michael Kopel & Herbert Dawid, 1998. "On economic applications of the genetic algorithm: a model of the cobweb type," Journal of Evolutionary Economics, Springer, vol. 8(3), pages 297-315.
    8. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    9. Theissen, Erik, 2000. "Market structure, informational efficiency and liquidity: An experimental comparison of auction and dealer markets," Journal of Financial Markets, Elsevier, vol. 3(4), pages 333-363, November.
    10. Olivier Brandouy & Angelo Corelli & Iryna Veryzhenko & Roger Waldeck, 2012. "A re-examination of the "zero is enough" hypothesis in the emergence of financial stylized facts," Post-Print hal-00951003, HAL.
    11. Olivier Brandouy & Angelo Corelli & Iryna Veryzhenko & Roger Waldeck, 2012. "A re-examination of the “zero is enough” hypothesis in the emergence of financial stylized facts," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 223-248, October.
    12. Dawid, Herbert, 1999. "On the convergence of genetic learning in a double auction market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1545-1567, September.
    13. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    14. Goettler, Ronald L. & Parlour, Christine A. & Rajan, Uday, 2009. "Informed traders and limit order markets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 67-87, July.
    15. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    16. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    17. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "Predicting bid-ask spreads using long memory autoregressive conditional poisson models," SFB 649 Discussion Papers 2011-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    19. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    20. Yan, Yuxing & Zhang, Shaojun, 2012. "An improved estimation method and empirical properties of the probability of informed trading," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 454-467.
    21. Lijian Wei & Xiong Xiong & Wei Zhang & Xue-Zhong He & Yongjie Zhang, 2017. "The effect of genetic algorithm learning with a classifier system in limit order markets," Published Paper Series 2017-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    22. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    23. Giulia Iori & Carl Chiarella, 2002. "A simple microstructure model of double auction markets," Computing in Economics and Finance 2002 44, Society for Computational Economics.
    24. Routledge, Bryan R, 1999. "Adaptive Learning in Financial Markets," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1165-1202.
    25. Chen Yao & Mao Ye, 2018. "Why Trading Speed Matters: A Tale of Queue Rationing under Price Controls," The Review of Financial Studies, Society for Financial Studies, vol. 31(6), pages 2157-2183.
    26. Albert J. Menkveld, 2016. "The Economics of High-Frequency Trading: Taking Stock," Annual Review of Financial Economics, Annual Reviews, vol. 8(1), pages 1-24, October.
    27. Kluger, Brian D. & McBride, Mark E., 2011. "Intraday trading patterns in an intelligent autonomous agent-based stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 79(3), pages 226-245, August.
    28. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    29. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    30. Matteo Aquilina & Eric Budish & Peter O'Neill, 2021. "Quantifying the high-frequency trading "arms race"," BIS Working Papers 955, Bank for International Settlements.
    31. Chiarella, Carl & He, Xue-Zhong & Wei, Lijian, 2015. "Learning, information processing and order submission in limit order markets," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 245-268.
    32. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    33. Routledge, Bryan R., 2001. "Genetic Algorithm Learning To Choose And Use Information," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 303-325, April.
    34. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    35. Hoffmann, Peter, 2014. "A dynamic limit order market with fast and slow traders," Journal of Financial Economics, Elsevier, vol. 113(1), pages 156-169.
    36. Olivier Brandouy & Angelo Corelli & Iryna Veryzhenko & Roger Waldeck, 2012. "A re-examination of the "zero is enough" hypothesis in the emergence of financial stylized facts," Post-Print hal-00951015, HAL.
    37. Ioanid Rosu, 2012. "Order Choice and Information in Limit Order Markets," Post-Print hal-00712067, HAL.
    38. Matteo Aquilina & Eric Budish & Peter O'Neill, 2021. "Quantifying the High-Frequency Trading "Arms Race"," NBER Working Papers 29011, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xue-Zhong & Lin, Shen, 2022. "Reinforcement Learning Equilibrium in Limit Order Markets," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    2. Choudhary, Priya & Thenmozhi, M., 2024. "Fintech and financial sector: ADO analysis and future research agenda," International Review of Financial Analysis, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xue-Zhong & Lin, Shen, 2022. "Reinforcement Learning Equilibrium in Limit Order Markets," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    2. Lijian Wei & Xiong Xiong & Wei Zhang & Xue-Zhong He & Yongjie Zhang, 2017. "The effect of genetic algorithm learning with a classifier system in limit order markets," Published Paper Series 2017-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Chiarella, Carl & He, Xue-Zhong & Wei, Lijian, 2015. "Learning, information processing and order submission in limit order markets," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 245-268.
    4. Lijian Wei & Wei Zhang & Xue-Zhong He & Yongjie Zhang, 2013. "Learning and Information Dissemination in Limit Order Markets," Research Paper Series 333, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    6. Carl Chiarella & Xue-Zhong He & Lei Shi & Lijian Wei, 2017. "A behavioural model of investor sentiment in limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 71-86, January.
    7. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    8. Carl Chiarella & Xue-Zhong He & Lijian Wei, 2013. "Learning and Evolution of Trading Strategies in Limit Order Markets," Research Paper Series 335, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Hamza Bodor & Laurent Carlier, 2024. "Stylized Facts and Market Microstructure: An In-Depth Exploration of German Bond Futures Market," Papers 2401.10722, arXiv.org.
    10. Ladley, Daniel, 2020. "The high frequency trade off between speed and sophistication," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    12. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    13. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    14. Bellia, Mario & Pelizzon, Loriana & Subrahmanyam, Marti & Uno, Jun & Yuferova, Darya, 2017. "Coming early to the party," SAFE Working Paper Series 182, Leibniz Institute for Financial Research SAFE.
      • Mario Bellia & Loriana Pelizzon & Marti G. Subrahmanyam & Jun Uno & Darya Yuferova, 2020. "Coming early to the party," Working Papers 2020:11, Department of Economics, University of Venice "Ca' Foscari".
    15. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    16. James Paulin & Anisoara Calinescu & Michael Wooldridge, 2018. "Understanding Flash Crash Contagion and Systemic Risk: A Micro-Macro Agent-Based Approach," Papers 1805.08454, arXiv.org.
    17. Sida Li & Xin Wang & Mao Ye, 2019. "Who Provides Liquidity, and When?," NBER Working Papers 25972, National Bureau of Economic Research, Inc.
    18. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
    19. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    20. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.

    More about this item

    Keywords

    High-frequency trading; Price efficiency; Machine learning; Genetic algorithm; Limit order market;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:139:y:2022:i:c:s0165188922001439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.