IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2001019.html
   My bibliography  Save this paper

Equilibrium selection in stochastic games

Author

Listed:
  • Herings, P.J.J.

    (Microeconomics & Public Economics)

  • Peeters, R.J.A.P.

    (Microeconomics & Public Economics)

Abstract

In this paper a selection theory for stochastic games is developed. The theory itself is based on the ideas of Harsanyi and Selten to select equilibria for games in standard form. We introduce several possible definitions for the stochastic tracing procedure, an extension of the linear tracing procedure to the class of stochastic games. We analyze the properties of these alternative definitions. We show that exactly one of the proposed extensions is consistent with the formulation of Harsanyi–Selten for games in standard form and captures stationarity.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from anot
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Herings, P.J.J. & Peeters, R.J.A.P., 2001. "Equilibrium selection in stochastic games," Research Memorandum 019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2001019
    DOI: 10.26481/umamet.2001019
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/714208/guid-e5f9e509-aee6-47bc-81b0-3e372e8b1779-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umamet.2001019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, December.
    2. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    3. Andrew McLennan, 2005. "The Expected Number of Nash Equilibria of a Normal Form Game," Econometrica, Econometric Society, vol. 73(1), pages 141-174, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramsey, David M. & Szajowski, Krzysztof, 2008. "Selection of a correlated equilibrium in Markov stopping games," European Journal of Operational Research, Elsevier, vol. 184(1), pages 185-206, January.
    2. Steffen Eibelshäuser & Victor Klockmann & David Poensgen & Alicia von Schenk, 2023. "The Logarithmic Stochastic Tracing Procedure: A Homotopy Method to Compute Stationary Equilibria of Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1511-1526, November.
    3. Murat Kurt & Mark S. Roberts & Andrew J. Schaefer & M. Utku Ünver, 2011. "Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach," Boston College Working Papers in Economics 785, Boston College Department of Economics, revised 14 Oct 2011.
    4. Govindan, Srihari & Wilson, Robert, 2009. "Global Newton Method for stochastic games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 414-421, January.
    5. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herings, P. Jean-Jacques & Zhan, Yang, 2021. "The computation of pairwise stable networks," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    2. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    3. Herings, P. J. J. & Polemarchakis, H., 2002. "Equilibrium and arbitrage in incomplete asset markets with fixed prices," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 133-155, April.
    4. P. Jean-Jacques Herings & Harold Houba, 2010. "The Condorcet Paradox Revisited," Tinbergen Institute Discussion Papers 10-026/1, Tinbergen Institute.
    5. P. Herings & Ronald Peeters, 2005. "A Globally Convergent Algorithm to Compute All Nash Equilibria for n-Person Games," Annals of Operations Research, Springer, vol. 137(1), pages 349-368, July.
    6. Wheatley, W. Parker, 2003. "Survival And Ownership Of Internet Marketplaces For Agriculture," 2003 Annual meeting, July 27-30, Montreal, Canada 22214, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Steffen Eibelshäuser & Victor Klockmann & David Poensgen & Alicia von Schenk, 2023. "The Logarithmic Stochastic Tracing Procedure: A Homotopy Method to Compute Stationary Equilibria of Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1511-1526, November.
    8. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    9. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    10. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.
    11. Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
    12. Eibelshäuser, Steffen & Poensgen, David, 2019. "Markov Quantal Response Equilibrium and a Homotopy Method for Computing and Selecting Markov Perfect Equilibria of Dynamic Stochastic Games," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203603, Verein für Socialpolitik / German Economic Association.
    13. Nathalie Greenan & Marc-Arthur Diaye & Patricia Crifo, 2004. "Pourquoi les entreprises évaluent-elles individuellement leurs salariés ?," Économie et Prévision, Programme National Persée, vol. 164(3), pages 27-55.
    14. Bosch-Domènech, Antoni & Vriend, Nicolaas J., 2013. "On the role of non-equilibrium focal points as coordination devices," Journal of Economic Behavior & Organization, Elsevier, vol. 94(C), pages 52-67.
    15. van Damme, Eric & Hurkens, Sjaak, 1999. "Endogenous Stackelberg Leadership," Games and Economic Behavior, Elsevier, vol. 28(1), pages 105-129, July.
    16. Dennis L. Gärtner, 2022. "Corporate Leniency in a Dynamic World: The Preemptive Push of an Uncertain Future," Journal of Industrial Economics, Wiley Blackwell, vol. 70(1), pages 119-146, March.
    17. Antonio Cabrales & Rosemarie Nagel & Roc Armenter, 2007. "Equilibrium selection through incomplete information in coordination games: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 10(3), pages 221-234, September.
    18. Paul Pezanis-Christou & Abdolkarim Sadrieh, 2003. "Elicited bid functions in (a)symmetric first-price auctions," Working Papers 85, Barcelona School of Economics.
    19. Frank H. Page & Myrna H. Wooders, 2009. "Endogenous Network Dynamics," Working Papers 2009.28, Fondazione Eni Enrico Mattei.
    20. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2001019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.