Is microblogging data reflected in stock market volatility? Evidence from Sina Weibo
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2019.04.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guan, Wanqiu & Gao, Haoyu & Yang, Mingmin & Li, Yuan & Ma, Haixin & Qian, Weining & Cao, Zhigang & Yang, Xiaoguang, 2014. "Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 340-351.
- Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests," Journal of Behavioral and Experimental Finance, Elsevier, vol. 18(C), pages 50-53.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Zhang, Yongjie & An, Yahui & Feng, Xu & Jin, Xi, 2017. "Celebrities and ordinaries in social networks: Who knows more information?," Finance Research Letters, Elsevier, vol. 20(C), pages 153-161.
- Giannini, Robert & Irvine, Paul & Shu, Tao, 2019. "The convergence and divergence of investors' opinions around earnings news: Evidence from a social network," Journal of Financial Markets, Elsevier, vol. 42(C), pages 94-120.
- Marcelo S. Perlin & João F. Caldeira & André A. P. Santos & Martin Pontuschka, 2017. "Can We Predict the Financial Markets Based on Google's Search Queries?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 454-467, July.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Milla Siikanen & Kk{e}stutis Baltakys & Juho Kanniainen & Ravi Vatrapu & Raghava Mukkamala & Abid Hussain, 2017. "Facebook drives behavior of passive households in stock markets," Papers 1709.07300, arXiv.org, revised May 2018.
- Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
- Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
- You, Wanhai & Guo, Yawei & Peng, Cheng, 2017. "Twitter's daily happiness sentiment and the predictability of stock returns," Finance Research Letters, Elsevier, vol. 23(C), pages 58-64.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Jin, Xi & Shen, Dehua & Zhang, Wei, 2016. "Has microblogging changed stock market behavior? Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 151-156.
- Yingying Xu & Zhixin Liu & Jichang Zhao & Chiwei Su, 2017. "Weibo sentiments and stock return: A time-frequency view," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
- Shen, Dehua & Li, Xiao & Xue, Mei & Zhang, Wei, 2017. "Does microblogging convey firm-specific information? Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 621-626.
- Jones, Charles M. & Kaul, Gautam & Lipson, Marc L., 1994. "Information, trading, and volatility," Journal of Financial Economics, Elsevier, vol. 36(1), pages 127-154, August.
- Diks, Cees & Panchenko, Valentyn, 2006.
"A new statistic and practical guidelines for nonparametric Granger causality testing,"
Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
- Diks, C.G.H. & Panchenko, V., 2004. "A new statistic and practical guidelines for nonparametric Granger causality testing," CeNDEF Working Papers 04-11, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Li, Xiao & Shen, Dehua & Xue, Mei & Zhang, Wei, 2017. "Daily happiness and stock returns: The case of Chinese company listed in the United States," Economic Modelling, Elsevier, vol. 64(C), pages 496-501.
- Boris Podobnik & H. Eugene Stanley, 2007. "Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Non-stationary Time Series," Papers 0709.0281, arXiv.org.
- Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
- Siikanen, Milla & Baltakys, Kęstutis & Kanniainen, Juho & Vatrapu, Ravi & Mukkamala, Raghava & Hussain, Abid, 2018. "Facebook drives behavior of passive households in stock markets," Finance Research Letters, Elsevier, vol. 27(C), pages 208-213.
- Jun Wang & Zhilong Xie & Qing Li & Jinghua Tan & Rong Xing & Yuanzhu Chen & Fengyun Wu, 2019. "Effect of Digitalized Rumor Clarification on Stock Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(2), pages 450-474, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Chao & Fan, Yixin & Xie, Qiwei & Wang, Chao, 2022. "Market-based versus bank-based financial structure in China: From the perspective of financial risk," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 24-39.
- Bouteska, Ahmed & Ha, Le Thanh & Bhuiyan, Faruk & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Contagion between investor sentiment and green bonds in China during the global uncertainties," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 469-484.
- Wang, Xinjie & Xiang, Zhiqiang & Xu, Weike & Yuan, Peixuan, 2022. "The causal relationship between social media sentiment and stock return: Experimental evidence from an online message forum," Economics Letters, Elsevier, vol. 216(C).
- Yılmaz, Emrah Sıtkı & Ozpolat, Aslı & Destek, Mehmet Akif, 2022. "Do Twitter Sentiments Really Effective on Energy Stocks? Evidence from Intercompany Dependency," MPRA Paper 114155, University Library of Munich, Germany.
- Shahid Raza & Sun Baiqing & Pwint Kay-Khine & Muhammad Ali Kemal, 2023. "Uncovering the Effect of News Signals on Daily Stock Market Performance: An Econometric Analysis," IJFS, MDPI, vol. 11(3), pages 1-25, August.
- Lu, Jing & Chen, Rongze, 2023. "Do individual investors pay attention to the information acquisition activities of institutional investors?," Finance Research Letters, Elsevier, vol. 58(PD).
- Dongqi Cui & Yuhan Cheng, 2020. "The Impact of the Public Opinion on Stock Market: Evidence from Weibo in China," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(4), pages 1-10.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Philippas, Dionisis & Dragomirescu-Gaina, Catalin & Goutte, Stéphane & Nguyen, Duc Khuong, 2021.
"Investors’ attention and information losses under market stress,"
Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 1112-1127.
- Dionisis Th Philippas & Catalin Dragomirescu-Gaina & Stéphane Goutte & Duc Khuong Nguyen, 2021. "Investors’ attention and information losses under market stress," Post-Print hal-03434918, HAL.
- Li, Yue & W. Goodell, John & Shen, Dehua, 2021. "Does happiness forecast implied volatility? Evidence from nonparametric wave-based Granger causality testing," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 113-122.
- Shen, Dehua & Liu, Lanbiao & Zhang, Yongjie, 2018. "Quantifying the cross-sectional relationship between online sentiment and the skewness of stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 928-934.
- Yılmaz, Emrah Sıtkı & Ozpolat, Aslı & Destek, Mehmet Akif, 2022. "Do Twitter Sentiments Really Effective on Energy Stocks? Evidence from Intercompany Dependency," MPRA Paper 114155, University Library of Munich, Germany.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
- Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
- Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
- Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).
- Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
- Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
- Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests," Journal of Behavioral and Experimental Finance, Elsevier, vol. 18(C), pages 50-53.
- Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
- Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Zhao, Ruwei & Xiong, Xiong & Shen, Dehua, 2018. "Investor attention and performance of IPO firms: Evidence from online searches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 342-348.
- Qadan, Mahmoud & Zoua’bi, Maher, 2019. "Financial attention and the demand for information," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 82(C).
- Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
- Michael Graham & Jussi Nikkinen & Jarkko Peltomäki, 2020. "Web-Based Investor Fear Gauge and Stock Market Volatility: An Emerging Market Perspective," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 19(2), pages 127-153, August.
- Zuochao Zhang & Yongjie Zhang & Dehua Shen & Wei Zhang, 2018. "The Dynamic Cross-Correlations between Mass Media News, New Media News, and Stock Returns," Complexity, Hindawi, vol. 2018, pages 1-11, February.
More about this item
Keywords
Stock market volatility; Sina Weibo; Realized volatility; Chinese stock market;All these keywords.
JEL classification:
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318307803. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.