IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0180723.html
   My bibliography  Save this article

Weibo sentiments and stock return: A time-frequency view

Author

Listed:
  • Yingying Xu
  • Zhixin Liu
  • Jichang Zhao
  • Chiwei Su

Abstract

This study provides new insights into the relationships between social media sentiments and the stock market in China. Based on machine learning, we classify microblogs posted on Sina Weibo, a Twitter’s variant in China into five detailed sentiments of anger, disgust, fear, joy, and sadness. Using wavelet analysis, we find close positive linkages between sentiments and the stock return, which have both frequency and time-varying features. Five detailed sentiments are positively related to the stock return for certain periods, particularly since October 2014 at medium to high frequencies of less than ten trading days, when the stock return is undergoing significant fluctuations. Sadness appears to have a closer relationship with the stock return than the other four sentiments. As to the lead-lag relationships, the stock return causes Weibo sentiments rather than reverse for most of the periods with significant linkages. Compared with polarity sentiments (negative vs. positive), detailed sentiments provide more information regarding relationships between Weibo sentiments and the stock market. The stock market exerts positive effects on bullishness and agreement of microblogs. Meanwhile, agreement leads the stock return in-phase at the frequency of approximately 40 trading days, indicating that less disagreement improves certainty about the stock market.

Suggested Citation

  • Yingying Xu & Zhixin Liu & Jichang Zhao & Chiwei Su, 2017. "Weibo sentiments and stock return: A time-frequency view," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0180723
    DOI: 10.1371/journal.pone.0180723
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180723
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0180723&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0180723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gregory W. Brown & Michael T. Cliff, 2005. "Investor Sentiment and Asset Valuation," The Journal of Business, University of Chicago Press, vol. 78(2), pages 405-440, March.
    2. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    3. Milgrom, Paul & Stokey, Nancy, 1982. "Information, trade and common knowledge," Journal of Economic Theory, Elsevier, vol. 26(1), pages 17-27, February.
    4. Lin, Shen & Ren, Da & Zhang, Wei & Zhang, Yongjie & Shen, Dehua, 2016. "Network interdependency between social media and stock trading activities: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 305-312.
    5. Rechenthin, Michael & Street, W. Nick & Srinivasan, Padmini, 2013. "Stock chatter: Using stock sentiment to predict price direction," Algorithmic Finance, IOS Press, vol. 2(3-4), pages 169-196.
    6. Hirshleifer, David & Teoh, Siew Hong, 2003. "Limited attention, information disclosure, and financial reporting," Journal of Accounting and Economics, Elsevier, vol. 36(1-3), pages 337-386, December.
    7. António Rua, 2012. "Money Growth and Inflation in the Euro Area: A Time-Frequency View," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(6), pages 875-885, December.
    8. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    9. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    10. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word‐of‐Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    11. Tao Zhang & Jian Li & Phil Malone, 2004. "Closed-End Fund Discounts in Chinese Stock Markets," Chinese Economy, Taylor & Francis Journals, vol. 37(3), pages 17-38, May.
    12. Sanjiv Das & Asís Martínez-Jerez & Peter Tufano, 2005. "eInformation: A Clinical Study of Investor Discussion and Sentiment," Financial Management, Financial Management Association, vol. 34(3), Fall.
    13. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    14. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    15. Wang, Yuenan & Di Iorio, Amalia, 2007. "The cross section of expected stock returns in the Chinese A-share market," Global Finance Journal, Elsevier, vol. 17(3), pages 335-349, March.
    16. Jin, Xi & Shen, Dehua & Zhang, Wei, 2016. "Has microblogging changed stock market behavior? Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 151-156.
    17. Brown, Gregory W. & Cliff, Michael T., 2004. "Corrigendum to "Investor sentiment and the near-term stock market" [J. Empirical Finance 11 (2004) 1-27]," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 627-628, September.
    18. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    19. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    20. Peter Dodds & Christopher Danforth, 2010. "Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents," Journal of Happiness Studies, Springer, vol. 11(4), pages 441-456, August.
    21. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    22. Mizrach, Bruce & Weerts, Susan, 2009. "Experts online: An analysis of trading activity in a public Internet chat room," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 266-281, May.
    23. Lilian Ng & Fei Wu, 2010. "Peer Effects in the Trading Decisions of Individual Investors," Financial Management, Financial Management Association International, vol. 39(2), pages 807-831, June.
    24. Desheng Dash Wu & David L. Olson, 2015. "Online Stock Forum Sentiment Analysis," Palgrave Macmillan Books, in: Enterprise Risk Management in Finance, chapter 6, pages 49-56, Palgrave Macmillan.
    25. Thomas Lux, 2011. "Sentiment dynamics and stock returns: the case of the German stock market," Empirical Economics, Springer, vol. 41(3), pages 663-679, December.
    26. Jian Wang & Junfeng Zhu & Feifei Dou, 2012. "Who Plays the Key Role among Shanghai, Shenzhen and Hong Kong Stock Markets?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 20(6), pages 102-120, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross C Phillips & Denise Gorse, 2018. "Cryptocurrency price drivers: Wavelet coherence analysis revisited," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-21, April.
    2. Yingying Xu & Jichang Zhao, 2022. "Can sentiments on macroeconomic news explain stock returns? Evidence form social network data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2073-2088, April.
    3. Ziyuan Ma & Conor Ryan & Jim Buckley & Muslim Chochlov, 2024. "Do Weibo platform experts perform better at predicting stock market?," Papers 2403.00772, arXiv.org.
    4. Dong, Hang & Gil-Bazo, Javier, 2020. "Sentiment stocks," International Review of Financial Analysis, Elsevier, vol. 72(C).
    5. Xu, Yingying & Lien, Donald, 2022. "Which affects stock performances more, words or deeds of the key person?," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Zhang, Tonghui & Yuan, Ying & Wu, Xi, 2020. "Is microblogging data reflected in stock market volatility? Evidence from Sina Weibo," Finance Research Letters, Elsevier, vol. 32(C).
    7. Shan Lu & Jichang Zhao & Huiwen Wang, 2018. "The Power of Trading Polarity: Evidence from China Stock Market Crash," Papers 1802.01143, arXiv.org.
    8. Alzahrani, Ahmed Ibrahim & Sarsam, Samer Muthana & Al-Samarraie, Hosam & Alblehai, Fahad, 2023. "Exploring the sentimental features of rumor messages and investors' intentions to invest," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 433-444.
    9. Siqing Shan & Xijie Ju & Yigang Wei & Zijin Wang, 2021. "Effects of PM 2.5 on People’s Emotion: A Case Study of Weibo (Chinese Twitter) in Beijing," IJERPH, MDPI, vol. 18(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    2. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    3. Zhang, Wei & Li, Xiao & Shen, Dehua & Teglio, Andrea, 2016. "Daily happiness and stock returns: Some international evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 201-209.
    4. Xiong Xiong & Chunchun Luo & Ye Zhang & Shen Lin, 2019. "Do stock bulletin board systems (BBS) contain useful information? A viewpoint of interaction between BBS quality and predicting ability," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1385-1411, March.
    5. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
    6. Alina Lerman, 2020. "Individual Investors' Attention to Accounting Information: Evidence from Online Financial Communities," Contemporary Accounting Research, John Wiley & Sons, vol. 37(4), pages 2020-2057, December.
    7. Sanjay Sehgal & G. S. Sood & Namita Rajput, 2009. "Investor Sentiment in India: A Survey," Vision, , vol. 13(2), pages 13-23, April.
    8. Li, Xiao & Shen, Dehua & Xue, Mei & Zhang, Wei, 2017. "Daily happiness and stock returns: The case of Chinese company listed in the United States," Economic Modelling, Elsevier, vol. 64(C), pages 496-501.
    9. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    10. Mahmoudi, Nader & Docherty, Paul & Melia, Adrian, 2022. "Firm-level investor sentiment and corporate announcement returns," Journal of Banking & Finance, Elsevier, vol. 144(C).
    11. Kiran Thapa, 2013. "Stock Message Board Recommendations and Share Trading Activity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 10, July-Dece.
    12. CURATOLA, Giuliano & DONADELLI, Michael & KIZYS, Renatas & RIEDEL, Max, 2016. "Investor Sentiment and Sectoral Stock Returns: Evidence from World Cup Games," Finance Research Letters, Elsevier, vol. 17(C), pages 267-274.
    13. Kim, Jikyung (Jeanne) & Dong, Hang & Choi, Jeonghye & Chang, Sue Ryung, 2022. "Sentiment change and negative herding: Evidence from microblogging and news," Journal of Business Research, Elsevier, vol. 142(C), pages 364-376.
    14. Kiran Thapa, 2013. "Stock Message Board Recommendations and Share Trading Activity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2013, January-A.
    15. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    16. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    17. Das, Prashant & Füss, Roland & Hanle, Benjamin & Russ, Isabel Nina, 2020. "The cross-over effect of irrational sentiments in housing, commercial property, and stock markets," Journal of Banking & Finance, Elsevier, vol. 114(C).
    18. Zhang, Yongjie & Zhang, Yuzhao & Shen, Dehua & Zhang, Wei, 2017. "Investor sentiment and stock returns: Evidence from provincial TV audience rating in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 288-294.
    19. Yamini Yadav & Pramod Kumar Naik, 2024. "Investors’ Irrational Sentiment and Stock Market Returns: A Quantile Regression Approach Using Indian Data," Business Perspectives and Research, , vol. 12(1), pages 45-64, January.
    20. Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.