IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v20y2017icp153-161.html
   My bibliography  Save this article

Celebrities and ordinaries in social networks: Who knows more information?

Author

Listed:
  • Zhang, Yongjie
  • An, Yahui
  • Feng, Xu
  • Jin, Xi

Abstract

This paper tests the information contained in messages that various types of users post on social networks. Our data come from Sina Weibo, the biggest social network in China. The users are classified as either celebrities or ordinaries. We find that postings from celebrities significantly predict stock returns, whereas postings from ordinaries have no predictive power. Furthermore, postings from celebrities contain more future public information and current private information. Ordinaries’ postings contain only stale information. The event study suggests that ordinaries can be considered as information followers rather than providers. These results are consistent with the informed guru hypothesis.

Suggested Citation

  • Zhang, Yongjie & An, Yahui & Feng, Xu & Jin, Xi, 2017. "Celebrities and ordinaries in social networks: Who knows more information?," Finance Research Letters, Elsevier, vol. 20(C), pages 153-161.
  • Handle: RePEc:eee:finlet:v:20:y:2017:i:c:p:153-161
    DOI: 10.1016/j.frl.2016.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316301763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    2. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    3. Depken II, Craig A. & Zhang, Ying, 2010. "Adverse selection and reputation in a world of cheap talk," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 548-558, November.
    4. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    5. Zoran Ivkovi & Scott Weisbenner, 2007. "Information Diffusion Effects in Individual Investors' Common Stock Purchases: Covet Thy Neighbors' Investment Choices," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1327-1357.
    6. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2005. "Evidence on the speed of convergence to market efficiency," Journal of Financial Economics, Elsevier, vol. 76(2), pages 271-292, May.
    7. Shan, Liwei & Gong, Stephen X., 2012. "Investor sentiment and stock returns: Wenchuan Earthquake," Finance Research Letters, Elsevier, vol. 9(1), pages 36-47.
    8. Dev, Pritha, 2013. "Transfer of information by an informed trader," Finance Research Letters, Elsevier, vol. 10(2), pages 58-71.
    9. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    10. Engelberg, Joseph E. & Reed, Adam V. & Ringgenberg, Matthew C., 2012. "How are shorts informed?," Journal of Financial Economics, Elsevier, vol. 105(2), pages 260-278.
    11. Roland Benabou & Guy Laroque, 1992. "Using Privileged Information to Manipulate Markets: Insiders, Gurus, and Credibility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 921-958.
    12. Nofer, Michael & Hinz, Oliver, 2014. "Are Crowds on the Internet Wiser than Experts? The Case of a Stock Prediction Community," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69935, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    14. Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
    15. Mitchell, Mark L & Mulherin, J Harold, 1994. "The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    16. Bhattacharya, Utpal & Daouk, Hazem & Jorgenson, Brian & Kehr, Carl-Heinrich, 2000. "When an event is not an event: the curious case of an emerging market," Journal of Financial Economics, Elsevier, vol. 55(1), pages 69-101, January.
    17. Lily Fang & Joel Peress, 2009. "Media Coverage and the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 64(5), pages 2023-2052, October.
    18. Chai, Edwina F.L. & Lee, Adrian D. & Wang, Jianxin, 2015. "Global information distribution in the gold OTC markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 206-217.
    19. Crawford, Vincent P & Sobel, Joel, 1982. "Strategic Information Transmission," Econometrica, Econometric Society, vol. 50(6), pages 1431-1451, November.
    20. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word‐of‐Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    21. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    22. Yu, Fang (Frank), 2008. "Analyst coverage and earnings management," Journal of Financial Economics, Elsevier, vol. 88(2), pages 245-271, May.
    23. Wang, Jianxin & Yang, Minxian, 2011. "Housewives of Tokyo versus the gnomes of Zurich: Measuring price discovery in sequential markets," Journal of Financial Markets, Elsevier, vol. 14(1), pages 82-108, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Broadstock, David C. & Zhang, Dayong, 2019. "Social-media and intraday stock returns: The pricing power of sentiment," Finance Research Letters, Elsevier, vol. 30(C), pages 116-123.
    2. Zhang, Tonghui & Yuan, Ying & Wu, Xi, 2020. "Is microblogging data reflected in stock market volatility? Evidence from Sina Weibo," Finance Research Letters, Elsevier, vol. 32(C).
    3. Cao, Xing & Zhang, Yongjie & Feng, Xu & Meng, Xiangtong, 2021. "Investor interaction and price efficiency: Evidence from social media," Finance Research Letters, Elsevier, vol. 40(C).
    4. Heleen Brans & Bert Scholtens, 2020. "Under his thumb the effect of president Donald Trump’s Twitter messages on the US stock market," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-11, March.
    5. Jin, Xuejun & Zhu, Yu & Huang, Ying Sophie, 2019. "Losing by learning? A study of social trading platform," Finance Research Letters, Elsevier, vol. 28(C), pages 171-179.
    6. Siikanen, Milla & Baltakys, Kęstutis & Kanniainen, Juho & Vatrapu, Ravi & Mukkamala, Raghava & Hussain, Abid, 2018. "Facebook drives behavior of passive households in stock markets," Finance Research Letters, Elsevier, vol. 27(C), pages 208-213.
    7. Yao, Wenyun & Wei, Jiahui & Shen, Yongjian & Deng, Yan & Kutan, Ali M., 2020. "Does celebrity spokesperson signal firm performance? Evidence from a drug scandal in China," Finance Research Letters, Elsevier, vol. 34(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    2. Lixing Mei & Yulei Rao & Mei Wang & Jianxin Wang, 2019. "Do investors post messages differently from mobile devices? The correlation between mobile Internet messages posting and stock returns," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 66(4), pages 423-452, December.
    3. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    4. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    5. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    6. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    7. Patrick Houlihan & Germán G. Creamer, 2021. "Leveraging Social Media to Predict Continuation and Reversal in Asset Prices," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 433-453, February.
    8. Xiong Xiong & Chunchun Luo & Ye Zhang & Shen Lin, 2019. "Do stock bulletin board systems (BBS) contain useful information? A viewpoint of interaction between BBS quality and predicting ability," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1385-1411, March.
    9. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    10. Xiaofei Zhao, 2017. "Does Information Intensity Matter for Stock Returns? Evidence from Form 8-K Filings," Management Science, INFORMS, vol. 63(5), pages 1382-1404, May.
    11. Na, Haejung & Kim, Soonho, 2021. "Predicting stock prices based on informed traders’ activities using deep neural networks," Economics Letters, Elsevier, vol. 204(C).
    12. Kearney, Colm & Liu, Sha, 2014. "Textual sentiment in finance: A survey of methods and models," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 171-185.
    13. Xiong Xiong & Zhang Jin & Jin Xi & Feng Xu, 2016. "Review on Financial Innovations in Big Data Era," Journal of Systems Science and Information, De Gruyter, vol. 4(6), pages 489-504, December.
    14. Buehlmaier, Matthias M. M. & Zechner, Josef, 2016. "Financial media, price discovery, and merger arbitrage," CFS Working Paper Series 551, Center for Financial Studies (CFS).
    15. Luo, Mancy, 2017. "Essays in financial intermediation and political economy," Other publications TiSEM 146f40d3-6c89-4c6d-8fea-1, Tilburg University, School of Economics and Management.
    16. Thomas Dierckx & Jesse Davis & Wim Schoutens, 2020. "Using Machine Learning and Alternative Data to Predict Movements in Market Risk," Papers 2009.07947, arXiv.org.
    17. Alina Lerman, 2020. "Individual Investors' Attention to Accounting Information: Evidence from Online Financial Communities," Contemporary Accounting Research, John Wiley & Sons, vol. 37(4), pages 2020-2057, December.
    18. García, Diego & Norli, Øyvind, 2012. "Geographic dispersion and stock returns," Journal of Financial Economics, Elsevier, vol. 106(3), pages 547-565.
    19. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    20. Manuel Ammann & Nic Schaub, 2021. "Do Individual Investors Trade on Investment-Related Internet Postings?," Management Science, INFORMS, vol. 67(9), pages 5679-5702, September.

    More about this item

    Keywords

    Gurus; Social network; Information; Online postings; Stock price;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:20:y:2017:i:c:p:153-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.