IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v32y2020ics1544612318305488.html
   My bibliography  Save this article

Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume

Author

Listed:
  • Khuntia, Sashikanta
  • Pattanayak, J.K.

Abstract

This paper evaluates the adaptive pattern of long memory in the volatility of intra-day bitcoin returns. It also tests the impact of the trading volume on time-varying long memory. Our finding confirms long memory in the volatility of intra-day bitcoin returns is not an all-or-nothing phenomenon; it is adaptive to change in time and creation of events and, therefore, adheres to the proposition of the adaptive market hypothesis. This paper reveals the explanatory power of trading volume on long memory during bearish and bullish movements.

Suggested Citation

  • Khuntia, Sashikanta & Pattanayak, J.K., 2020. "Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume," Finance Research Letters, Elsevier, vol. 32(C).
  • Handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318305488
    DOI: 10.1016/j.frl.2018.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318305488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2018.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    3. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    4. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    5. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    6. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    7. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    8. Bentes, Sonia R., 2016. "Long memory volatility of gold price returns: How strong is the evidence from distinct economic cycles?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 149-160.
    9. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    10. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "Testing for time-varying long-range dependence in volatility for emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 577-588.
    11. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    12. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    13. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    14. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    15. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    16. Gupta, Rangan & Pierdzioch, Christian & Selmi, Refk & Wohar, Mark E., 2018. "Does partisan conflict predict a reduction in US stock market (realized) volatility? Evidence from a quantile-on-quantile regression model☆," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 87-96.
    17. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    18. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    19. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    20. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    21. Assaf, Ata, 2015. "Long memory and level shifts in REITs returns and volatility," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 172-182.
    22. Hiremath, Gourishankar S. & Narayan, Seema, 2016. "Testing the adaptive market hypothesis and its determinants for the Indian stock markets," Finance Research Letters, Elsevier, vol. 19(C), pages 173-180.
    23. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2018. "An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers," Papers 1808.01926, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onur Özdemir & Anoop S. Kumar, 2024. "Dynamic Efficiency and Herd Behavior During Pre- and Post-COVID-19 in the NFT Market: Evidence from Multifractal Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1255-1279, March.
    2. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    3. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Yarovaya, Larisa & Zięba, Damian, 2022. "Intraday volume-return nexus in cryptocurrency markets: Novel evidence from cryptocurrency classification," Research in International Business and Finance, Elsevier, vol. 60(C).
    5. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.
    6. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun & Ahniia Havrylina, 2022. "Persistence in the Passion Investment Market," CESifo Working Paper Series 9586, CESifo.
    7. Yousaf, Imran & Yarovaya, Larisa, 2022. "The relationship between trading volume, volatility and returns of Non-Fungible Tokens: evidence from a quantile approach," Finance Research Letters, Elsevier, vol. 50(C).
    8. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    9. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    10. Memon, Bilal Ahmed & Yao, Hongxing & Naveed, Hafiz Muhammad, 2022. "Examining the efficiency and herding behavior of commodity markets using multifractal detrended fluctuation analysis. Empirical evidence from energy, agriculture, and metal markets," Resources Policy, Elsevier, vol. 77(C).
    11. Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
    12. Lahmiri, Salim & Bekiros, Stelios, 2021. "The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Faheem Aslam & Paulo Ferreira & Haider Ali & Sumera Kauser, 2022. "Herding behavior during the Covid-19 pandemic: a comparison between Asian and European stock markets based on intraday multifractality," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(2), pages 333-359, June.
    14. Khurshid, Adnan & Khan, Khalid & Cifuentes-Faura, Javier & Chen, Yufeng, 2024. "Asymmetric multifractality: Comparative efficiency analysis of global technological and renewable energy prices using MFDFA and A-MFDFA approaches," Energy, Elsevier, vol. 289(C).
    15. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    16. Skwarek Mateusz, 2023. "Is Bitcoin an emerging market? A market efficiency perspective," Central European Economic Journal, Sciendo, vol. 10(57), pages 219-236, January.
    17. Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    18. Rehman, Mobeen Ur & Asghar, Nadia & Kang, Sang Hoon, 2020. "Do Islamic indices provide diversification to bitcoin? A time-varying copulas and value at risk application," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    19. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
    20. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    4. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    5. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    6. Tetsuya Takaishi & Takanori Adachi, 2019. "Market efficiency, liquidity, and multifractality of Bitcoin: A dynamic study," Papers 1902.09253, arXiv.org.
    7. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    8. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    9. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    11. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
    12. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    13. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    14. Derick Quintino & Jessica Campoli & Heloisa Burnquist & Paulo Ferreira, 2020. "Efficiency of the Brazilian Bitcoin: A DFA Approach," IJFS, MDPI, vol. 8(2), pages 1-9, April.
    15. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    16. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    17. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    18. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    19. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    20. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.

    More about this item

    Keywords

    Bitcoin; Cryptocurrencies; Volatility; Long memory; Adaptive market hypothesis;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318305488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.