Social-media and intraday stock returns: The pricing power of sentiment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2019.03.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Renault, Thomas, 2017.
"Intraday online investor sentiment and return patterns in the U.S. stock market,"
Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Post-Print hal-03205113, HAL.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
- You, Wanhai & Guo, Yawei & Peng, Cheng, 2017. "Twitter's daily happiness sentiment and the predictability of stock returns," Finance Research Letters, Elsevier, vol. 23(C), pages 58-64.
- Pieter de Jong & Sherif Elfayoumy & Oliver Schnusenberg, 2017. "From Returns to Tweets and Back: An Investigation of the Stocks in the Dow Jones Industrial Average," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(1), pages 54-64, January.
- Bukovina, Jaroslav, 2016. "Social media big data and capital markets—An overview," Journal of Behavioral and Experimental Finance, Elsevier, vol. 11(C), pages 18-26.
- Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2017. "Divergence of sentiment and stock market trading," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 130-141.
- Zhang, Yongjie & An, Yahui & Feng, Xu & Jin, Xi, 2017. "Celebrities and ordinaries in social networks: Who knows more information?," Finance Research Letters, Elsevier, vol. 20(C), pages 153-161.
- Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
- Yochi Cohen-Charash & Charles A Scherbaum & John D Kammeyer-Mueller & Barry M Staw, 2013. "Mood and the Market: Can Press Reports of Investors' Mood Predict Stock Prices?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
- Mazboudi, Mohamad & Khalil, Samer, 2017. "The attenuation effect of social media: Evidence from acquisitions by large firms," Journal of Financial Stability, Elsevier, vol. 28(C), pages 115-124.
- Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
- Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020.
"Stock returns and investor sentiment: textual analysis and social media,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
- Zachary McGurk & Adam Nowak & Joshua C. Hall, 2019. "Stock Returns and Investor Sentiment: Textual Analysis and Social Media," Working Papers 19-03, Department of Economics, West Virginia University.
- Na, Haejung & Kim, Soonho, 2021. "Predicting stock prices based on informed traders’ activities using deep neural networks," Economics Letters, Elsevier, vol. 204(C).
- Siikanen, Milla & Baltakys, Kęstutis & Kanniainen, Juho & Vatrapu, Ravi & Mukkamala, Raghava & Hussain, Abid, 2018. "Facebook drives behavior of passive households in stock markets," Finance Research Letters, Elsevier, vol. 27(C), pages 208-213.
- Andranik Tumasjan, 2024. "The many faces of social media in business and economics research: Taking stock of the literature and looking into the future," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 389-426, April.
- Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
- Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
- Alomari, Mohammad & Al Rababa’a, Abdel Razzaq & El-Nader, Ghaith & Alkhataybeh, Ahmad & Ur Rehman, Mobeen, 2021. "Examining the effects of news and media sentiments on volatility and correlation: Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 280-297.
- Béatrice BOULU-RESHEF & Catherine BRUNEAU & Maxime NICOLAS & Thomas RENAULT, 2022.
"An Experimental Analysis of Investor Sentiment,"
LEO Working Papers / DR LEO
2940, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Béatrice Boulu-Reshef & Catherine Bruneau & Maxime Nicolas & Thomas Renault, 2023. "An Experimental Analysis of Investor Sentiment," Post-Print hal-04222561, HAL.
- Wang, Xinjie & Xiang, Zhiqiang & Xu, Weike & Yuan, Peixuan, 2022. "The causal relationship between social media sentiment and stock return: Experimental evidence from an online message forum," Economics Letters, Elsevier, vol. 216(C).
- Saurabh, Samant & Dey, Kushankur, 2020. "Unraveling the relationship between social moods and the stock market: Evidence from the United Kingdom," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
- Zeitun, Rami & Rehman, Mobeen Ur & Ahmad, Nasir & Vo, Xuan Vinh, 2023. "The impact of Twitter-based sentiment on US sectoral returns," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Qing Liu & Hosung Son, 2024. "Data selection and collection for constructing investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
- Alex Frino & Caihong Xu & Z. Ivy Zhou, 2022. "Are option traders more informed than Twitter users? A PVAR analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1755-1771, September.
- Thomas Renault, 2020.
"Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages,"
Digital Finance, Springer, vol. 2(1), pages 1-13, September.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205149, HAL.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Post-Print hal-03205149, HAL.
- J. Anthony Cookson & Corbin Fox & Javier Gil-Bazo & Juan Imbet & Christoph Schiller, 2024.
"Social Media as a Bank Run Catalyst,"
Working Papers
hal-04400382, HAL.
- Juan Imbet & J. Anthony Cookson & Corbin Fox & Christoph Schiller & Javier Gil-Bazo, 2024. "Social Media as a Bank Run Catalyst," Post-Print hal-04660083, HAL.
- Rui Fan & Oleksandr Talavera & Vu Tran, 2023.
"Social media and price discovery: The case of cross‐listed firms,"
Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 151-167, February.
- Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media and price discovery: the case of cross-listed firms," Discussion Papers 20-05, Department of Economics, University of Birmingham.
- Santi, Caterina, 2023. "Investor climate sentiment and financial markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Jing Zhou & Silin Ye & Wei Lan & Yunwen Jiang, 2021. "The effect of social media on corporate violations: Evidence from Weibo posts in China," International Review of Finance, International Review of Finance Ltd., vol. 21(3), pages 966-988, September.
- Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020.
"Artificial intelligence in asset management,"
Working Papers
20202001, Cambridge Judge Business School, University of Cambridge.
- Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
- Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
More about this item
Keywords
Textual analysis; Social-media; Sentiment; Asset pricing; Intraday;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:30:y:2019:i:c:p:116-123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.