IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04222561.html
   My bibliography  Save this paper

An Experimental Analysis of Investor Sentiment

Author

Listed:
  • Béatrice Boulu-Reshef

    (LEO - Laboratoire d'Économie d'Orleans [2022-...] - UO - Université d'Orléans - UT - Université de Tours - UCA - Université Clermont Auvergne)

  • Catherine Bruneau
  • Maxime Nicolas
  • Thomas Renault

Abstract

No abstract is available for this item.

Suggested Citation

  • Béatrice Boulu-Reshef & Catherine Bruneau & Maxime Nicolas & Thomas Renault, 2023. "An Experimental Analysis of Investor Sentiment," Post-Print hal-04222561, HAL.
  • Handle: RePEc:hal:journl:hal-04222561
    DOI: 10.1007/978-3-031-24486-5_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Camerer, Colin F & Hogarth, Robin M, 1999. "The Effects of Financial Incentives in Experiments: A Review and Capital-Labor-Production Framework," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 7-42, December.
    2. Òscar Jordà & Katharina Knoll & Dmitry Kuvshinov & Moritz Schularick & Alan M Taylor, 2019. "The Rate of Return on Everything, 1870–2015," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(3), pages 1225-1298.
    3. Mohammed Abdellaoui & Han Bleichrodt & Hilda Kammoun, 2013. "Do financial professionals behave according to prospect theory? An experimental study," Theory and Decision, Springer, vol. 74(3), pages 411-429, March.
    4. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    5. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    6. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    7. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    8. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    9. Hun‐Tong Tan & Elaine Ying Wang & Bo Zhou, 2014. "When the Use of Positive Language Backfires: The Joint Effect of Tone, Readability, and Investor Sophistication on Earnings Judgments," Journal of Accounting Research, Wiley Blackwell, vol. 52(1), pages 273-302, March.
    10. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    11. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    12. Beattie, Jane & Loomes, Graham, 1997. "The Impact of Incentives upon Risky Choice Experiments," Journal of Risk and Uncertainty, Springer, vol. 14(2), pages 155-168, March.
    13. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    14. Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
    15. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    16. Petra Kralj Novak & Jasmina Smailović & Borut Sluban & Igor Mozetič, 2015. "Sentiment of Emojis," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    17. Jeffrey Hales & Xi (Jason) Kuang & Shankar Venkataraman, 2011. "Who Believes the Hype? An Experimental Examination of How Language Affects Investor Judgments," Journal of Accounting Research, Wiley Blackwell, vol. 49(1), pages 223-255, March.
    18. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    2. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    3. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    4. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    5. Mahmoudi, Nader & Docherty, Paul & Melia, Adrian, 2022. "Firm-level investor sentiment and corporate announcement returns," Journal of Banking & Finance, Elsevier, vol. 144(C).
    6. Santi, Caterina, 2023. "Investor climate sentiment and financial markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    7. Michael Lachanski & Steven Pav, 2017. "Shy of the Character Limit: "Twitter Mood Predicts the Stock Market" Revisited," Econ Journal Watch, Econ Journal Watch, vol. 14(3), pages 302–345-3, September.
    8. Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
    9. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    10. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    11. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    12. Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
    13. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    14. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    15. Marlene Amstad & Leonardo Gambacorta & Chao He & Dora Xia, 2021. "Trade sentiment and the stock market: new evidence based on big data textual analysis of Chinese media," BIS Working Papers 917, Bank for International Settlements.
    16. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    17. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    18. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    19. Na, Haejung & Kim, Soonho, 2021. "Predicting stock prices based on informed traders’ activities using deep neural networks," Economics Letters, Elsevier, vol. 204(C).
    20. Shah, Syed Faisal & Albaity, Mohamed, 2022. "The role of trust, investor sentiment, and uncertainty on bank stock return performance: Evidence from the MENA region," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04222561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.