IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221010185.html
   My bibliography  Save this article

Is new energy driven by crude oil, high-tech sector or low-carbon notion? New evidence from high-frequency data

Author

Listed:
  • Qu, Fang
  • Chen, Yufeng
  • Zheng, Biao

Abstract

There has been controversy over exactly what drives investment in new energy stocks. We contribute to this debate by exploring the volatility spillovers and its asymmetric effects between crude oil, new energy stocks, high-tech sector, and the low-carbon notion in China. This study is based on realized volatility, spillover index, and an improved spillover asymmetric measure method under high-frequency data. Empirical results reveal that only a few evidences back up the powerful volatility spillover from oil to new energy, which declares the crude oil should not be employed as a weathervane for the volatility of new energy. High-tech and low-carbon are main contributors to the volatility spillover of new energy, which shows China's new energy listed companies not only in the technical strength have been improved, but also in the concept of environmental protection has made the advance. Nevertheless, spillover asymmetric measure indicates, new energy, high-tech, and low-carbon are sensitive to positive news, which implies overemphasizing the role of new energy in technology and environmental protection may exacerbate the speculative mentality and potential financial bubbles of China's new energy stocks.

Suggested Citation

  • Qu, Fang & Chen, Yufeng & Zheng, Biao, 2021. "Is new energy driven by crude oil, high-tech sector or low-carbon notion? New evidence from high-frequency data," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010185
    DOI: 10.1016/j.energy.2021.120770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    2. Lee, Chien-Chiang & Ranjbar, Omid & Lee, Chi-Chuan, 2021. "Testing the persistence of shocks on renewable energy consumption: Evidence from a quantile unit-root test with smooth breaks," Energy, Elsevier, vol. 215(PB).
    3. Chen, Yufeng & Li, Wenqi & Qu, Fang, 2019. "Dynamic asymmetric spillovers and volatility interdependence on China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 825-838.
    4. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    5. Yufeng Chen & Wenqi Li & Xi Jin, 2018. "Volatility Spillovers between Crude Oil Prices and New Energy Stock Price in China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 43-62, December.
    6. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    7. Zhang, Guofu & Du, Ziping, 2017. "Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China," Energy, Elsevier, vol. 135(C), pages 249-256.
    8. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    9. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    10. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    11. Muhammad Kamran Khan & Muhammad Imran Khan & Muhammad Rehan, 2020. "The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-13, December.
    12. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    13. Kang, Sang Hoon & Lee, Jang Woo, 2019. "The network connectedness of volatility spillovers across global futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    14. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    15. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    16. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    17. Luo, Jiawen & Wang, Shengquan, 2019. "The asymmetric high-frequency volatility transmission across international stock markets," Finance Research Letters, Elsevier, vol. 31(C), pages 104-109.
    18. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    19. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    20. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    21. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Hoon Kang, Sang, 2017. "Time-varying volatility spillovers between stock and precious metal markets with portfolio implications," Resources Policy, Elsevier, vol. 53(C), pages 88-102.
    22. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    23. Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2018. "Asymmetric semi-volatility spillover effects in EMU stock markets," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 221-230.
    24. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    25. Reboredo, Juan C. & Wen, Xiaoqian, 2015. "Are China’s new energy stock prices driven by new energy policies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 624-636.
    26. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    27. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    28. Sadorsky, Perry, 2001. "Risk factors in stock returns of Canadian oil and gas companies," Energy Economics, Elsevier, vol. 23(1), pages 17-28, January.
    29. Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
    30. Sun, Chuanwang & Ding, Dan & Fang, Xingming & Zhang, Huiming & Li, Jianglong, 2019. "How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China's market," Energy, Elsevier, vol. 169(C), pages 637-645.
    31. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2013. "Modeling Market Downside Volatility," Review of Finance, European Finance Association, vol. 17(1), pages 443-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    2. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Doğan, Buhari & Adekoya, Oluwasegun B. & Wohar, Mark, 2024. "Asymmetric spillover effects in energy markets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 470-502.
    3. Li, Hailing & Li, Yuxin & Zhang, Hua, 2023. "The spillover effects among the traditional energy markets, metal markets and sub-sector clean energy markets," Energy, Elsevier, vol. 275(C).
    4. Dai, Zhifeng & Hu, Juan & Liu, Xinheng & Yang, Mi, 2024. "ynamic time-domain and frequency-domain spillovers and portfolio strategies between climate change attention and energy-relevant markets," Energy Economics, Elsevier, vol. 134(C).
    5. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    6. Xiaohong Qi & Guofu Zhang & Yuqi Wang, 2022. "Distributional Predictability and Quantile Connectedness of New Energy, Steam Coal, and High-Tech in China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    7. Guannan Wang & Juan Meng & Bin Mo, 2023. "Dynamic Volatility Spillover Effects and Portfolio Strategies among Crude Oil, Gold, and Chinese Electricity Companies," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    8. Zhang, Yunhan & Ji, Qiang & Zhang, Dayong & Guo, Kun, 2024. "How does Shanghai crude oil futures affect top global oil companies: The role of multi-uncertainties," Energy Economics, Elsevier, vol. 131(C).
    9. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    10. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    11. Deyuan Zhang & Wensen She & Fang Qu & Chunyan He, 2023. "Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data," Energies, MDPI, vol. 16(16), pages 1-19, August.
    12. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    2. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    3. Janda, Karel & Kristoufek, Ladislav & Zhang, Binyi, 2022. "Return and volatility spillovers between Chinese and U.S. clean energy related stocks," Energy Economics, Elsevier, vol. 108(C).
    4. Juan C. Reboredo & Andrea Ugolini & Yifei Chen, 2019. "Interdependence Between Renewable-Energy and Low-Carbon Stock Prices," Energies, MDPI, vol. 12(23), pages 1-14, November.
    5. Jiang, Yonghong & Wang, Jieru & Lie, Jiayi & Mo, Bin, 2021. "Dynamic dependence nexus and causality of the renewable energy stock markets on the fossil energy markets," Energy, Elsevier, vol. 233(C).
    6. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Doğan, Buhari & Adekoya, Oluwasegun B. & Wohar, Mark, 2024. "Asymmetric spillover effects in energy markets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 470-502.
    7. Karel Janda & Ladislav Kristoufek & Binyi Zhang, 2021. "Return and volatility spillovers between Chinese and U.S. Clean Energy Related Stocks: Evidence from VAR-MGARCH estimations," FFA Working Papers 4.001, Prague University of Economics and Business, revised 17 Jan 2022.
    8. Capucine Nobletz, 2021. "Return spillovers between green energy indexes and financial markets: a first sectoral approach," EconomiX Working Papers 2021-24, University of Paris Nanterre, EconomiX.
    9. Yahya, Muhammad & Ghosh, Sajal & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah, 2020. "Evaluation of cross-quantile dependence and causality between non-ferrous metals and clean energy indexes," Energy, Elsevier, vol. 202(C).
    10. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    11. Geng, Jiang-Bo & Liu, Changyu & Ji, Qiang & Zhang, Dayong, 2021. "Do oil price changes really matter for clean energy returns?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    13. Tiantian Liu & Shigeyuki Hamori, 2020. "Spillovers to Renewable Energy Stocks in the US and Europe: Are They Different?," Energies, MDPI, vol. 13(12), pages 1-28, June.
    14. Ansaram, Karishma & Petitjean, Mikael, 2024. "A global perspective on the nexus between energy and stock markets in light of the rise of renewable energy," Energy Economics, Elsevier, vol. 131(C).
    15. Shahbaz, Muhammad & Trabelsi, Nader & Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Jiao, Zhilun, 2021. "Relationship between green investments, energy markets, and stock markets in the aftermath of the global financial crisis," Energy Economics, Elsevier, vol. 104(C).
    16. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    17. Çelik, İsmail & Sak, Ahmet Furkan & Höl, Arife Özdemir & Vergili, Gizem, 2022. "The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    18. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    19. Uddin, Gazi Salah & Rahman, Md Lutfur & Hedström, Axel & Ahmed, Ali, 2019. "Cross-quantilogram-based correlation and dependence between renewable energy stock and other asset classes," Energy Economics, Elsevier, vol. 80(C), pages 743-759.
    20. Zeyi Fu & Hongli Niu & Weiqing Wang, 2023. "Market Efficiency and Cross-Correlations of Chinese New Energy Market with Other Assets: Evidence from Multifractality Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1287-1311, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.