IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp204-216.html
   My bibliography  Save this article

Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes

Author

Listed:
  • Lau, K.Y.
  • Tan, C.W.
  • Yatim, A.H.M.

Abstract

Standalone diesel systems have been widely used on Malaysian islands due to the isolated locations of the islands. Nevertheless, the high diesel prices and the high cost of transporting diesel to islands cause the use of standalone diesel systems to be uneconomical. This study analyzes the feasibility of implementing PV (photovoltaic) systems as alternatives to standalone diesel systems by considering the effects of annual real interest rates, diesel prices and load sizes, using the HOMER (hybrid optimization of multiple energy resources) software. The results indicate that, at the ordinary diesel price of $ 0.61/L, low interest rates (0–3%) are desirable for the implementation of hybrid PV/diesel with battery systems over standalone diesel systems, regardless of the load sizes. Although different load sizes may affect the decisions on the implementation of PV systems at higher interest rates (6–9%), these effects become less pronounced as the price of diesel increases to $ 1.22/L or higher. Also, under high diesel prices, the choice of optimal system configurations obtained for small load sizes should be applicable for larger load sizes, albeit with different component ratings. Although the current study is intended for Malaysian islands, the findings can be generalized for other places with similar solar radiation levels.

Suggested Citation

  • Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2015. "Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes," Energy, Elsevier, vol. 83(C), pages 204-216.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:204-216
    DOI: 10.1016/j.energy.2015.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500167X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valente, Luiz Carlos Guedes & de Almeida, Silvio Carlos Anı́bal, 1998. "Economic analysis of a diesel/photovoltaic hybrid system for decentralized power generation in northern Brazil," Energy, Elsevier, vol. 23(4), pages 317-323.
    2. Massetti, Emanuele & Tavoni, Massimo, 2012. "A developing Asia emission trading scheme (Asia ETS)," Energy Economics, Elsevier, vol. 34(S3), pages 436-443.
    3. Lau, K.Y. & Yousof, M.F.M. & Arshad, S.N.M. & Anwari, M. & Yatim, A.H.M., 2010. "Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions," Energy, Elsevier, vol. 35(8), pages 3245-3255.
    4. Nfah, E.M. & Ngundam, J.M. & Tchinda, R., 2007. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon," Renewable Energy, Elsevier, vol. 32(5), pages 832-844.
    5. Veldhuis, A.J. & Reinders, A.H.M.E., 2013. "Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 315-324.
    6. Ashourian, M.H. & Cherati, S.M. & Mohd Zin, A.A. & Niknam, N. & Mokhtar, A.S. & Anwari, M., 2013. "Optimal green energy management for island resorts in Malaysia," Renewable Energy, Elsevier, vol. 51(C), pages 36-45.
    7. Ma, Tao & Yang, Hongxing & Lu, Lin, 2013. "Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong," Applied Energy, Elsevier, vol. 112(C), pages 663-672.
    8. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    9. Amin, Nowshad & Lung, Chin Wen & Sopian, Kamaruzzaman, 2009. "A practical field study of various solar cells on their performance in Malaysia," Renewable Energy, Elsevier, vol. 34(8), pages 1939-1946.
    10. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    2. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    3. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    4. Akinyele, Daniel O. & Rayudu, Ramesh K., 2016. "Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries," Energy, Elsevier, vol. 109(C), pages 160-179.
    5. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    6. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    7. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    8. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    9. Mohammed, Ammar & Pasupuleti, Jagadeesh & Khatib, Tamer & Elmenreich, Wilfried, 2015. "A review of process and operational system control of hybrid photovoltaic/diesel generator systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 436-446.
    10. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    11. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    12. Ludwig Kuznia & Bo Zeng & Grisselle Centeno & Zhixin Miao, 2013. "Stochastic optimization for power system configuration with renewable energy in remote areas," Annals of Operations Research, Springer, vol. 210(1), pages 411-432, November.
    13. Mohammed Baqer Zaki Yahya Al-quraishi & Shamsul Sarip & Hazilah Mad Kaidi & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki, 2022. "A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    14. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    15. Dileep, G. & Singh, S.N., 2015. "Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 109-129.
    16. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    17. Lau, K.Y. & Muhamad, N.A. & Arief, Y.Z. & Tan, C.W. & Yatim, A.H.M., 2016. "Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes," Energy, Elsevier, vol. 102(C), pages 65-82.
    18. Yap, Wai Kean & Karri, Vishy, 2015. "An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques," Renewable Energy, Elsevier, vol. 78(C), pages 42-50.
    19. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    20. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:204-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.