IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1213-d218010.html
   My bibliography  Save this article

Reliability, Availability and Maintainability Analysis for Grid-Connected Solar Photovoltaic Systems

Author

Listed:
  • A. Sayed

    (Electrical power and Machines department, the higher Institute of Engineering, El’Shorouk 11837, Egypt)

  • M. El-Shimy

    (Electrical power and Machines department, Faculty of Engineering, Ain Shams University, Cairo 11566, Egypt)

  • M. El-Metwally

    (Electrical power and Machines department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • M. Elshahed

    (Electrical power and Machines department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

Abstract

Recently, solar power generation is significantly contributed to growing renewable sources of electricity all over the world. The reliability and availability improvement of solar photovoltaic (PV) systems has become a critical area of interest for researchers. Reliability, availability, and maintainability (RAM) is an engineering tool used to address operational and safety issues of systems. It aims to identify the weakest areas of a system which will improve the overall system reliability. In this paper, RAM analysis of grid-connected solar-PV system is presented. Elaborate RAM analysis of these systems is presented starting from the sub-assembly level to the subsystem level, then the overall system. Further, an improved Reliability Block Diagram is presented to estimate the RAM performance of seven practical grid-connected solar-PV systems. The required input data are obtained from worldwide databases of failures, and repair of various subassemblies comprising various meteorological conditions. A novel approach is also presented in order to estimate the best probability density function for each sub-assembly. The monitoring of the critical subassemblies of a PV system will increase the possibility not only for improving the availability of the system, but also to optimize the maintenance costs. Additionally, it will inform the operators about the status of the various subsystems of the system.

Suggested Citation

  • A. Sayed & M. El-Shimy & M. El-Metwally & M. Elshahed, 2019. "Reliability, Availability and Maintainability Analysis for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1213-:d:218010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atikol, U. & Güven, H., 2003. "Impact of cogeneration on integrated resource planning of Turkey," Energy, Elsevier, vol. 28(12), pages 1259-1277.
    2. Stefan Baschel & Elena Koubli & Jyotirmoy Roy & Ralph Gottschalg, 2018. "Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance," Energies, MDPI, vol. 11(6), pages 1-16, June.
    3. Gupta, Nikita & Garg, Rachana & Kumar, Parmod, 2017. "Sensitivity and reliability models of a PV system connected to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 188-196.
    4. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    5. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    6. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    7. Sidrach-de-Cardona, M. & López, Ll.Mora, 1998. "Evaluation of a grid-connected photovoltaic system in southern Spain," Renewable Energy, Elsevier, vol. 15(1), pages 527-530.
    8. Hamdy, M.A. & Beshir, M.E. & Elmasry, S.E., 1989. "Reliability analysis of photovoltaic systems," Applied Energy, Elsevier, vol. 33(4), pages 253-263.
    9. Fernández-Infantes, Alberto & Contreras, Javier & Bernal-Agustín, José L., 2006. "Design of grid connected PV systems considering electrical, economical and environmental aspects: A practical case," Renewable Energy, Elsevier, vol. 31(13), pages 2042-2062.
    10. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    11. Colli, Alessandra, 2015. "Failure mode and effect analysis for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 804-809.
    12. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koester, L. & Lindig, S. & Louwen, A. & Astigarraga, A. & Manzolini, G. & Moser, D., 2022. "Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Hossein Khoun Jahan & Reyhaneh Eskandari & Tohid Rahimi & Rasoul Shalchi Alishah & Lei Ding & Kent Bertilsson & Mehran Sabahi & Frede Blaabjerg, 2021. "A Limited Common-Mode Current Switched-Capacitor Multilevel Inverter Topology and Its Performance and Lifetime Evaluation in Grid-Connected Photovoltaic Applications," Energies, MDPI, vol. 14(7), pages 1-18, March.
    3. Hak-Ju Lee & Byeong-Chan Oh & Seok-Woong Kim & Sung-Yul Kim, 2020. "V2G Strategy for Improvement of Distribution Network Reliability Considering Time Space Network of EVs," Energies, MDPI, vol. 13(17), pages 1-19, August.
    4. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    5. Pramod R. Sonawane & Sheetal Bhandari & Rajkumar Bhimgonda Patil & Sameer Al-Dahidi, 2023. "Reliability and Criticality Analysis of a Large-Scale Solar Photovoltaic System Using Fault Tree Analysis Approach," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    6. Eltton Araujo & Paulo Pereira & Jamilson Dantas & Paulo Maciel, 2020. "Dependability Impact in the Smart Solar Power Systems: An Analysis of Smart Buildings," Energies, MDPI, vol. 14(1), pages 1-24, December.
    7. Veljanovski, N. & ÄŒepin, M., 2024. "Event tree-based risk and financial assessment for power plants," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Joong-Woo Shin & Kwang-Hoon Yoon & Hui-Seok Chai & Jae-Chul Kim, 2022. "Reliability-Centered Maintenance Scheduling of Photovoltaic Components According to Failure Effects," Energies, MDPI, vol. 15(7), pages 1-15, March.
    9. Agnieszka Żelazna & Justyna Gołębiowska & Agata Zdyb & Artur Pawłowski, 2020. "A Hybrid vs. On-Grid Photovoltaic System: Multicriteria Analysis of Environmental, Economic, and Technical Aspects in Life Cycle Perspective," Energies, MDPI, vol. 13(15), pages 1-16, August.
    10. Pirbhulal, Sandeep & Gkioulos, Vasileios & Katsikas, Sokratis, 2021. "A Systematic Literature Review on RAMS analysis for critical infrastructures protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    11. Geeta Yadav & Dheeraj Joshi & Leena Gopinath & Mahendra Kumar Soni, 2022. "Reliability and Availability Optimization of Smart Microgrid Using Specific Configuration of Renewable Resources and Considering Subcomponent Faults," Energies, MDPI, vol. 15(16), pages 1-16, August.
    12. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    13. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.
    14. Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayed, A. & EL-Shimy, M. & El-Metwally, M. & Elshahed, M., 2020. "Impact of subsystems on the overall system availability for the large scale grid-connected photovoltaic systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Stefan Baschel & Elena Koubli & Jyotirmoy Roy & Ralph Gottschalg, 2018. "Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance," Energies, MDPI, vol. 11(6), pages 1-16, June.
    3. Pramod R. Sonawane & Sheetal Bhandari & Rajkumar Bhimgonda Patil & Sameer Al-Dahidi, 2023. "Reliability and Criticality Analysis of a Large-Scale Solar Photovoltaic System Using Fault Tree Analysis Approach," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    4. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    5. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    6. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    7. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    8. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    10. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Pérez, Oscar, 2019. "Quantitative failure rates and modes analysis in photovoltaic plants," Energy, Elsevier, vol. 183(C), pages 825-836.
    11. Isidoro Lillo-Bravo & Pablo González-Martínez & Miguel Larrañeta & José Guasumba-Codena, 2018. "Impact of Energy Losses Due to Failures on Photovoltaic Plant Energy Balance," Energies, MDPI, vol. 11(2), pages 1-23, February.
    12. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    13. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    14. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    15. Eltton Araujo & Paulo Pereira & Jamilson Dantas & Paulo Maciel, 2020. "Dependability Impact in the Smart Solar Power Systems: An Analysis of Smart Buildings," Energies, MDPI, vol. 14(1), pages 1-24, December.
    16. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    17. Joong-Woo Shin & Kwang-Hoon Yoon & Hui-Seok Chai & Jae-Chul Kim, 2022. "Reliability-Centered Maintenance Scheduling of Photovoltaic Components According to Failure Effects," Energies, MDPI, vol. 15(7), pages 1-15, March.
    18. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi & Nikta Chireh, 2019. "A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine," Energies, MDPI, vol. 12(13), pages 1-18, June.
    19. Aisha Sa’ad & Aimé C. Nyoungue & Zied Hajej, 2021. "Improved Preventive Maintenance Scheduling for a Photovoltaic Plant under Environmental Constraints," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    20. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1213-:d:218010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.