IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp832-843.html
   My bibliography  Save this article

Near-term economic benefits from grid-connected residential PV (photovoltaic) systems

Author

Listed:
  • Pillai, Gobind G.
  • Putrus, Ghanim A.
  • Georgitsioti, Tatiani
  • Pearsall, Nicola M.

Abstract

One of the main reasons attributed to the slow uptake of grid-connected residential PV (photovoltaic) systems, is the lack of information about the near-term economic benefits which are as important as long-term viability for residential customers. This paper presents a comparative assessment of the near-term economic benefits of grid-connected residential PV systems. Case studies from the UK and India are taken as examples, as they vary significantly in solar resource, customer demands, electricity prices and financial support mechanisms. A metric termed PEUC (prosumer electricity unit cost) is proposed to develop an economic evaluation methodology to assess the near-term benefits from PV systems. The results obtained showed that, under the present financial support mechanisms, domestic PV systems provide near-term economic benefits in most locations in India. For most locations in the UK, cost reduction is needed to achieve near-term financial benefits and this varies depending on the location of installation. The results presented demonstrate the importance of location specific system planning and demand-generation matching through optimal sizing of the PV system and demand side management.

Suggested Citation

  • Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:832-843
    DOI: 10.1016/j.energy.2014.02.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2006. "Photovoltaic projects for decentralized power supply in India: A financial evaluation," Energy Policy, Elsevier, vol. 34(18), pages 3727-3738, December.
    2. Planning Commission, 2012. "Annual Report (2011-12) on The Working of State Power Utilities and Electricity Departments," Working Papers id:4868, eSocialSciences.
    3. Swift, Kenton D., 2013. "A comparison of the cost and financial returns for solar photovoltaic systems installed by businesses in different locations across the United States," Renewable Energy, Elsevier, vol. 57(C), pages 137-143.
    4. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    5. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Samuelsen, Scott, 2012. "Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing," Energy, Elsevier, vol. 42(1), pages 546-562.
    6. Sharma, Atul, 2011. "A comprehensive study of solar power in India and World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1767-1776, May.
    7. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    8. Mondol, Jayanta Deb & Yohanis, Yigzaw G & Norton, Brian, 2009. "Optimising the economic viability of grid-connected photovoltaic systems," Applied Energy, Elsevier, vol. 86(7-8), pages 985-999, July.
    9. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    10. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2011. "Domestic application of solar PV systems in Ireland: The reality of their economic viability," Energy, Elsevier, vol. 36(10), pages 5865-5876.
    11. Thomas Hammons (ed.), 2009. "Renewable Energy," Books, IntechOpen, number 657, January-J.
    12. Paudel, Ananda Mani & Sarper, Hűseyin, 2013. "Economic analysis of a grid-connected commercial photovoltaic system at Colorado State University-Pueblo," Energy, Elsevier, vol. 52(C), pages 289-296.
    13. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    14. Twaha, Ssennoga & Idris, Mohd Hafizi & Anwari, Makbul & Khairuddin, Azhar, 2012. "Applying grid-connected photovoltaic system as alternative source of electricity to supplement hydro power instead of using diesel in Uganda," Energy, Elsevier, vol. 37(1), pages 185-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    2. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    3. Murphy, Patrick Mark & Twaha, Ssennoga & Murphy, Inês S., 2014. "Analysis of the cost of reliable electricity: A new method for analyzing grid connected solar, diesel and hybrid distributed electricity systems considering an unreliable electric grid, with examples ," Energy, Elsevier, vol. 66(C), pages 523-534.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    6. McKenna, Russell & Merkel, Erik & Fichtner, Wolf, 2017. "Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects," Applied Energy, Elsevier, vol. 189(C), pages 800-815.
    7. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    8. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    9. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    10. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    11. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    12. McKenna, Russell & Merkel. Erik & Fichtner, Wolf, 2016. "Energy autonomy in residential buildings: a techno-economic model-based analysis of the scale effects," Working Paper Series in Production and Energy 12, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    13. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    14. Raman, P. & Murali, J. & Sakthivadivel, D. & Vigneswaran, V.S., 2012. "Opportunities and challenges in setting up solar photo voltaic based micro grids for electrification in rural areas of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3320-3325.
    15. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    16. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    17. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    18. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    19. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    20. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:832-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.